某人射击5次,每次中靶的概率均为0.9,求他至少两次中靶的概率.
思路分析: 至少有两次中靶包括恰好有2次中靶,恰好有3次中靶,恰好有4次中靶和恰好有5次中靶四种情况.而这些事件是彼此互斥的,而他每次射击中靶的概率均相等,并且相互之间没有影响,所以每次射击又是相互独立事件,因而他射击5次是进行5次独立重复试验.
解法一:在5次射击中恰好有2次中靶的概率为
×0.9 2 ×0.1 3 ;
在5次射击中恰好有3次中靶的概率为
×0.9 3 ×0.1 2 ;
在5次射击中恰好有4次中靶的概率为
×0.9 4 ×0.1;
在5次射击中5次均中靶的概率为
×0.9 5 .
至少有2次中靶的概率为
×0.9 2 ×0.1 3 +
×0.9 3 ×0.1 2 +
×0.9 4 ×0.1+
×0.9 5 =0.008 1+0.072 9+0.328 05+0.590 49=0.999 54.
解法二:至少有2次中靶的对立事件是至多有1次中靶,它包括恰好有1次中靶与全没有中靶两种情况,显然这是两个互斥事件.
在5次射击中恰好有1次中靶的概率为
×0.9×0.1 4 ;
在5次射击中全没有中靶的概率为0.1 5 .
所以至少有2次中靶的概率为1-
×0.9×0.1 4 -0.1 5 =1-0.000 45-0.000 01=0.999 54.
误区警示 如果我们对独立重复试验的意义理解不深刻,很容易得出其概率为
×0.9 2 ×0.1 3 =0.008 1的错误结果.究其原因是“至少有2次中靶”这一事件并不是指“有2次中靶,而其余三次不中靶”,因而不能直接运用公式
p k (1-p) n-k .该公式仅适用于求某n次独立重复试验中,事件A发生了k次,而其余的n-k次事件A不发生的概率,且 P (A)=p.
设随机变量X,Y相互独立,且服从[0,1]上的均匀分布,求X+Y的概率密度.设随机变量X,Y相互独 2020-04-05 …
关于牛奶的英语广告词,对话形式的,可表演出来的~~~急就是两个同学当推销员,两个同学当顾客,在课堂 2020-04-09 …
九上概率问题在线等!急两副不同的拼图每副两张问随机抽取两张恰好拼成原图的概率(我的问题在于,需不需 2020-05-17 …
一个与排列组合有关的概率问题开始时令点M位于一维坐标系的0点,每一步向左或向右移动1,向左或向右的 2020-06-06 …
概率的二个题目,大家帮忙解答一下题目如下:1.抛掷一枚质地不均的硬币,每次出现正面的概率为2/3, 2020-06-13 …
10年中发生A事件46次问每年发生A事件的概率是多少要的是概率不是平均每年发生的次数要计算的过程 2020-06-13 …
从甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等.每人被录取的概率是3/5,那么甲乙丙丁戊被 2020-06-15 …
概率论设电力公司每月可以提供电力问题电力公司每月可供应电力服从(10,30)上的均匀分布,而工厂每 2020-06-15 …
假设在一个箱子中取球初始抽到红球的概率为10%,每多抽1次增加10%概率,抽到红球后概率重置问抽到 2020-06-22 …
《格列佛游记》中的著名故事梗概急需其中3个故事的梗概每个至少500字 2020-07-06 …