早教吧作业答案频道 -->数学-->
一个与排列组合有关的概率问题开始时令点M位于一维坐标系的0点,每一步向左或向右移动1,向左或向右的概率均为0.5.当M位于-1时停止,并记总移动步数为m.用含n的代数式表示P(m=n)(n为正奇数
题目详情
一个与排列组合有关的概率问题
开始时令点M位于一维坐标系的0点,每一步向左或向右移动1,向左或向右的概率均为0.5.当M位于-1时停止,并记总移动步数为m.
用含n的代数式表示P(m=n) (n为正奇数)
开始时令点M位于一维坐标系的0点,每一步向左或向右移动1,向左或向右的概率均为0.5.当M位于-1时停止,并记总移动步数为m.
用含n的代数式表示P(m=n) (n为正奇数)
▼优质解答
答案和解析
设n=2k+1,则P(m=n) = C(2k,k) * (1/2)^(2k+1) * 1/(k+1),其中C(n,m)代表n个数里取m个的不同组合个数.
求出C(2k,k) * (1/2)^(2k+1)是错误的,因为这个求解只是套了个二项式公式,而没有考虑到M直到最后一步前,向来位于x轴右侧这个重要的限制条件.
这是概率论里的一个著名问题,叫做Bertrand票选问题(英文专业名词为Bertrand's Ballot Theorem),大意是说:两个候选人A和B,最终分别获得p张和q张选票(设p>=q),则在唱票过程中A票数一直不落后于B的概率会是多少.网上有些资料可以参考,尤其是英文相关资料很多.
楼主的问题相当于Bertrand票选问题.就是说:在随机游走的过程中,是向右走的步数一直不小于向左走的步数,直到最后一步金身告破.

在2k步时位于原点的走法是C(2k,k),而我们要求的一直>=0的走法数目.大致的思路是翻折,如上图所示,如果之前已经金身不保,把后面的走法统统对调,向左走变向右走,向右走变向左走.则走法为C(2k,k-1)种,则金身不破的走法有C(2k,k)-C(2k,k-1)=C(2k,k)*(1-k/(k+1))=C(2k,k)*(1/(k+1))种.
求出C(2k,k) * (1/2)^(2k+1)是错误的,因为这个求解只是套了个二项式公式,而没有考虑到M直到最后一步前,向来位于x轴右侧这个重要的限制条件.
这是概率论里的一个著名问题,叫做Bertrand票选问题(英文专业名词为Bertrand's Ballot Theorem),大意是说:两个候选人A和B,最终分别获得p张和q张选票(设p>=q),则在唱票过程中A票数一直不落后于B的概率会是多少.网上有些资料可以参考,尤其是英文相关资料很多.
楼主的问题相当于Bertrand票选问题.就是说:在随机游走的过程中,是向右走的步数一直不小于向左走的步数,直到最后一步金身告破.

在2k步时位于原点的走法是C(2k,k),而我们要求的一直>=0的走法数目.大致的思路是翻折,如上图所示,如果之前已经金身不保,把后面的走法统统对调,向左走变向右走,向右走变向左走.则走法为C(2k,k-1)种,则金身不破的走法有C(2k,k)-C(2k,k-1)=C(2k,k)*(1-k/(k+1))=C(2k,k)*(1/(k+1))种.
看了 一个与排列组合有关的概率问题...的网友还看了以下:
如图所示,平行金属板A、B水平正对放置,分别带等量异号电荷,一带电微粒水平射入板间,在重力和电场力 2020-04-06 …
如图所示电路中,电源电动势为E,内阻为r,电路中O点接地,当滑动变阻器的滑片P向左滑动时,M、N两 2020-04-08 …
已知A(2,-1),B(-1,1),O为坐标原点,动点M满足向量OM=m倍的向量OA+n倍的向量O 2020-05-16 …
如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边 2020-06-13 …
一质点从A开始沿曲线AB运动,M、N、P、Q是轨迹上的四点,M→N质点做减速运动,N→B质点做加速 2020-06-18 …
如图,△ABC中,AB=BC=AC=6cm,现有两动点M,N分别从点A,B同时出发,沿三角形的边运 2020-06-22 …
已知点A(1,0).点R在y轴上运动,T在x轴上,N为动点,已知点A(1,0).点R在y轴上运动, 2020-07-22 …
风能是一种绿色能源,叶片在风力推动下转动,带动发电机发电,M、N为同一个叶片上的两点,下列判断正确 2020-07-29 …
如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别 2020-11-26 …
如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别 2020-11-26 …