早教吧作业答案频道 -->数学-->
如图,直线y=x与双曲线y=kx(x>0)相交于点A,点P在双曲线上,过P做PB∥y轴,交直线y=x于点B,点Q在x轴的正半轴上.(1)如果点A是线段OB中点,∠PAQ=45°①求证:△OAQ∽△BPA;②连接PQ,如
题目详情
如图,直线y=x与双曲线y=
(x>0)相交于点A,点P在双曲线上,过P做PB∥y轴,交直线y=x于点B,点Q在x轴的正半轴上.
(1)如果点A是线段OB中点,∠PAQ=45°
①求证:△OAQ∽△BPA;
②连接PQ,如果点A到线段PQ的距离为2,求k的值.
(2)如果点P在双曲线上移动(不与A重合),且保持△OAQ∽△BPA,那么∠PAQ是45°吗?若是,请说明理由;若不是,能确定其大小吗?

| k |
| x |
(1)如果点A是线段OB中点,∠PAQ=45°
①求证:△OAQ∽△BPA;
②连接PQ,如果点A到线段PQ的距离为2,求k的值.
(2)如果点P在双曲线上移动(不与A重合),且保持△OAQ∽△BPA,那么∠PAQ是45°吗?若是,请说明理由;若不是,能确定其大小吗?

▼优质解答
答案和解析
(1)①证明:由直线y=x可知∠AOQ=∠1=45°,
∵PB∥y轴,
∴∠ABP=∠1=45°,
∵∠AOQ+∠AQO+∠OAQ=180°,∠OAQ+∠PAQ+∠PAB=180°,∠AOQ=∠PAQ=45°,
∴∠AQO=∠PAB,
∵∠AOQ=∠ABP=45°,
∴△OAQ∽△BPA;
②分别过Q、P点作直线y=x的垂线,交直线与M、N.
∵点A到线段PQ的距离为2,
∴QM=PN=2,
∵∠AOQ=∠ABP=45°,∠OMQ=∠PNB=90°,
∴OQ=PB=2
,
设OA=AB=x,
∵△OAQ∽△BPA,
∴
=
,即
=
,
解得x=2
,
∵PA=2
,
∴A(2,2),
代入y=
得2=
,解得k=4,
(2)能确定;
理由:∵∠AOQ=∠ABP=45°,△OAQ∽△BPA,
∴∠OQA=∠BAP,
∵∠AOQ+∠AQO+∠OAQ=180°,∠OAQ+∠PAQ+∠PAB=180°,∠AOQ=45°,
∴∠PAQ=∠AOQ=45°.
(1)①证明:由直线y=x可知∠AOQ=∠1=45°,∵PB∥y轴,
∴∠ABP=∠1=45°,
∵∠AOQ+∠AQO+∠OAQ=180°,∠OAQ+∠PAQ+∠PAB=180°,∠AOQ=∠PAQ=45°,
∴∠AQO=∠PAB,
∵∠AOQ=∠ABP=45°,
∴△OAQ∽△BPA;
②分别过Q、P点作直线y=x的垂线,交直线与M、N.
∵点A到线段PQ的距离为2,
∴QM=PN=2,
∵∠AOQ=∠ABP=45°,∠OMQ=∠PNB=90°,
∴OQ=PB=2
| 2 |
设OA=AB=x,
∵△OAQ∽△BPA,
∴
| OA |
| PB |
| OQ |
| AB |
| x | ||
2
|
2
| ||
| x |
解得x=2
| 2 |
∵PA=2
| 2 |
∴A(2,2),
代入y=
| k |
| x |
| k |
| 2 |
(2)能确定;
理由:∵∠AOQ=∠ABP=45°,△OAQ∽△BPA,
∴∠OQA=∠BAP,
∵∠AOQ+∠AQO+∠OAQ=180°,∠OAQ+∠PAQ+∠PAB=180°,∠AOQ=45°,
∴∠PAQ=∠AOQ=45°.
看了 如图,直线y=x与双曲线y=...的网友还看了以下:
如图1,在等腰梯形ABCD中,AB‖CD,对角线AC⊥BD于P点……如图,在等腰梯形ABCD中,A 2020-05-01 …
一定质量的理想气体经历如图所示的状态变化,变化顺序由a→b→c→d,图中坐标轴上的符号p指气体压强 2020-05-13 …
如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P 2020-05-16 …
如连杆轴承径向间隙过小,应()。A.更换连杆轴承B.更换曲轴C.更换连杆D.更换连杆螺栓 2020-05-31 …
如图:已知抛物线与X轴交于A、B两点,与Y轴正半轴交于C点,直线X=1是抛物线的对称轴,如图:已知 2020-06-03 …
1.(1)已知数轴上点M,O,N对应的数分别-3.0.1,点p为数轴上任意一点.如果点p到M,N距 2020-06-06 …
如图,抛物线经过 A(-1,0)B(3,0)C(0,-3)三点 1.求抛物线的解析式和对称轴.如图 2020-06-27 …
圆的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线过点 2020-07-31 …
操作与探究(1)对数轴上的点P进行如下操作:先把点P表示的数乘以14,再把所得数对应的点向右平移1个 2020-11-17 …
(2014•辽宁)圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时 2020-12-03 …