早教吧作业答案频道 -->其他-->
(2010•石景山区二模)(1)已知:如图1,Rt△ABC中,∠ACB=90°,∠BAC=60°,CD平分∠ACB,点E为AB中点,PE⊥AB交CD的延长线于P,猜想:∠PAC+∠PBC=°(直接写出结论,不需证明).(2)已
题目详情
(2010•石景山区二模)(1)已知:如图1,Rt△ABC中,∠ACB=90°,∠BAC=60°,CD平分∠ACB,点E为AB中点,PE⊥AB交CD的延长线于P,猜想:∠PAC+∠PBC=______°(直接写出结论,不需证明).
(2)已知:如图2,Rt△ABC中,∠ACB=90°,∠BAC≠45°,CD平分∠ACB,点E为AB中点,PE⊥AB交CD的延长线于P,(1)中结论是否成立,若成立,请证明;若不成立请说明理由.

(2)已知:如图2,Rt△ABC中,∠ACB=90°,∠BAC≠45°,CD平分∠ACB,点E为AB中点,PE⊥AB交CD的延长线于P,(1)中结论是否成立,若成立,请证明;若不成立请说明理由.

▼优质解答
答案和解析
(1)猜想:∠PAC+∠PBC=180°;
(2)结论:依然成立.
证明:连接CE.
∵E为AB中点,
∴AE=EB=EC,
∴∠EAC=∠ECA,
∴∠DCE=∠ECA-∠DCA=∠EAC-45°,
又∵∠DAC=180°-∠ADC-45°=135°-∠PDE,
∴∠DCE=135°-∠PDE-45°=90°-∠PDE=∠DPE,
∴PE=EC=AE,
∴△PAE与△PBE为等腰直角三角形,∠APB=90°,
∴∠PAC+∠PBC=360°-∠APB-∠ACB=360°-90°-90°=180°.
(2)结论:依然成立.

证明:连接CE.
∵E为AB中点,
∴AE=EB=EC,
∴∠EAC=∠ECA,
∴∠DCE=∠ECA-∠DCA=∠EAC-45°,
又∵∠DAC=180°-∠ADC-45°=135°-∠PDE,
∴∠DCE=135°-∠PDE-45°=90°-∠PDE=∠DPE,
∴PE=EC=AE,
∴△PAE与△PBE为等腰直角三角形,∠APB=90°,
∴∠PAC+∠PBC=360°-∠APB-∠ACB=360°-90°-90°=180°.
看了 (2010•石景山区二模)(...的网友还看了以下:
已知a+b=c,a-b=d,求证:丨a丨=丨b丨等价于c⊥d,并解释其几何意义.(a、b、c、d均 2020-04-05 …
满足{a}⊆M⊆{a,b,c,d}的集合M的个数是( ) 是{a} {a,b} {a,c} {a, 2020-04-05 …
1.请把(a+b+c+d)(b+c-a-d)(c+a-b-d)(a+b-c-d)+16abcd因式 2020-04-25 …
证明空间中的四点A,B,C,D共面的充分必要条件是它们所对应的位置向量a,b,c,d满足(d,b, 2020-05-13 …
若非空集合M⊆N={a,b,c,d},则M的个数为8个{a},{b},{c},{d},{a,b}, 2020-05-15 …
A.(B, F, G, J, A, E, D, I, C, H)B.(B, A, D, E, F, 2020-05-26 …
已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直 2020-06-27 …
把(a+b+c+d)(b+c-a-d)(c+a-b-d)(a+b-c-d)+16abcd因式分解为 2020-06-27 …
已知a,b,c,d都是常数,a>b,c>d,若f(x)=2017-(x-a)(x-b)的零点为c, 2020-07-20 …
分解因式(b+c-a-d)^4(b-c)(a-d)+(c+a-b-d)^4(c-a)(b-d)+(a 2021-01-04 …