早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在平面直角坐标系中,AB⊥x轴,垂足为A,BC⊥y轴,垂足为C,已知A(a,0),C(0,c),其中a,c满足关系式a=c2-64+64-c2c-8+6,点P从A点出发沿折线AB-BC的方向运动到点C停止,运动的速度

题目详情
如图,在平面直角坐标系中,AB⊥x轴,垂足为A,BC⊥y轴,垂足为C,已知A(a,0),C(0,c),其中a,c满足关系式a=
c2-64
+
64-c2
c-8
+6,点P从A点出发沿折线AB-BC的方向运动到点C停止,运动的速度为每秒1个单位长度,设点P的运动时间为t妙.
(1)求A、B、C三点坐标;
(2)在点P的运动过程中,设三角形ACP的面积为S,用含t的代数式表示s;
(3)在点P的运动过程中,有一个角∠MPN=60°,PM边与射线AO相交于点E,PN边与射线OC相交于点F,试画出图形,并探究∠AEP与∠PFC的数量关系.
作业帮
▼优质解答
答案和解析
(1)∵a,c满足关系式a=c2-64+64-c2c-8+6,∴c2-64≥064-c2≥0c≠8,∴c=-8,a=6,∴A(6,0),B(6,-8),C(0,-8).(2)如图1中,①当0