早教吧作业答案频道 -->其他-->
如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A
题目详情

(1)四边形ADEF是什么四边形?
(2)当△ABC满足什么条件时,四边形ADEF是矩形?
(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?
▼优质解答
答案和解析
(1)四边形ADEF是平行四边形,
理由如下:
∵△ABD,△BCE都是等边三角形,
∴∠DBE=∠ABC=60°-∠ABE,AB=BD,BC=BE.
在△ABC与△DBE中,
,
∴△ABC≌△DBE(SAS).
∴DE=AC.
又∵AC=AF,
∴DE=AF.
同理可得EF=AD.
∴四边形ADEF是平行四边形.
(2)∵四边形ADEF是平行四边形,
∴当∠DAF=90°时,四边形ADEF是矩形,
∴∠FAD=90°.
∴∠BAC=360°-∠DAF-∠DAB-∠FAC=360°-90°-60°-60°=150°.
则当∠BAC=150°时,四边形ADEF是矩形;
(3)当△ABC为等边三角形时,以A、D、E、F为顶点的四边形不存在.
理由如下:
∵△ABD,△BCE都是等边三角形,
∴∠DBE=∠ABC=60°-∠ABE,AB=BD,BC=BE.
在△ABC与△DBE中,
|
∴△ABC≌△DBE(SAS).
∴DE=AC.
又∵AC=AF,
∴DE=AF.
同理可得EF=AD.
∴四边形ADEF是平行四边形.
(2)∵四边形ADEF是平行四边形,
∴当∠DAF=90°时,四边形ADEF是矩形,
∴∠FAD=90°.
∴∠BAC=360°-∠DAF-∠DAB-∠FAC=360°-90°-60°-60°=150°.
则当∠BAC=150°时,四边形ADEF是矩形;
(3)当△ABC为等边三角形时,以A、D、E、F为顶点的四边形不存在.
看了 如图,△ABD、△BCE、△...的网友还看了以下:
初中数学题:如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作C 2020-04-26 …
如图,三角形abc,内部的一点d,关于边ab ac,的对称点分别是点e f.一.判断三角形a e如 2020-05-13 …
下列图形中能够密铺的有()a正方形;b四边形;c三角形;d正六边形;e正七边形;f正八边形.A.1 2020-06-23 …
在平面直角坐标系中,O为原点,点A(-2,0),点B(0,2),点E,点F分别为OA,OB的中点. 2020-07-11 …
已知三角形abc为等边三角形,点D,F分别在边BC,AC上,且DF//AB,过点A平行于BC的直线 2020-07-22 …
如果凸n边形F(n≥4)的所有对角线都相等,那么A.F∈{四边形}B.F∈{五边形}C.F∈{四边 2020-07-25 …
已知三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F求证三角形ABE全已知 2020-08-01 …
等边三角形ABC边长是6,点D,E风别在AB,AC上,且AD=AE=2已知△ABC是边长为6的等边 2020-08-03 …
如图,△ABC是等边三角形,点D.F在AC.AB的延长线上,若AF=CD,则DB与DF有何数量关系? 2020-12-07 …
在平面直角坐标系中,O为原点,点A(-2,0),点B(0,2),点E,点F分别为OA,OB的中点,若 2020-12-25 …