早教吧作业答案频道 -->数学-->
(本题证明值可直接利用如下结论:若公共边所对的两个张角相等,则相应的四点共圆.例如如图1,由∠ACB=∠ADB,可得四点A、B、C、D共圆)如图2,圆内接五边形ABCDE中,AD是外接圆的
题目详情
(本题证明值可直接利用如下结论:若公共边所对的两个张角相等,则相应的四点共圆.例如如图1,由∠ACB=∠ADB,可得四点A、B、C、D共圆)如图2,圆内接五边形ABCDE中,AD是外接圆的直径,BE⊥AD,垂足为H,过点H作平行于CE的直线,与直线AC,DC分别交于F,G.证明:
(1)点A,B,F,H共圆;
(2)四边形BFCG是矩形.
(1)点A,B,F,H共圆;
(2)四边形BFCG是矩形.
▼优质解答
答案和解析
考点:
四点共圆
专题:
分析:
(1)根据圆周角定理得出,∠BAF=∠BEC,结合平行线的性质得出∠BAF=∠BHF,即可得出答案;(2)根据四点共圆的性质得出∠BFG=∠DAB=∠BCG,进而得出B、G、F、H共圆,即可得出BG⊥GC,进而得出答案.
证明:(1)由HG∥CE,得∠BHF=∠BEC,又∵BC=BC,∴∠BAF=∠BEC,∴∠BAF=∠BHF,∴点A、B、F、H共圆;(2)由(1)的结论,得∠BHA=∠BFA,∵BE⊥AD,∴BF⊥AC,又∵AD是圆的直径,∴CG⊥AC,由A、B、C、D共圆及A、B、F、H共圆,∴∠BFG=∠DAB=∠BCG,∴B、G、F、H共圆,∴∠BGC=∠AFB=90°,∴BG⊥GC,∴四边形BFCG是矩形.
点评:
此题主要考查了四点共圆的性质以及四点共圆的证明,正确应用四点共圆的性质是解题关键.
考点:
四点共圆
专题:
分析:
(1)根据圆周角定理得出,∠BAF=∠BEC,结合平行线的性质得出∠BAF=∠BHF,即可得出答案;(2)根据四点共圆的性质得出∠BFG=∠DAB=∠BCG,进而得出B、G、F、H共圆,即可得出BG⊥GC,进而得出答案.
证明:(1)由HG∥CE,得∠BHF=∠BEC,又∵BC=BC,∴∠BAF=∠BEC,∴∠BAF=∠BHF,∴点A、B、F、H共圆;(2)由(1)的结论,得∠BHA=∠BFA,∵BE⊥AD,∴BF⊥AC,又∵AD是圆的直径,∴CG⊥AC,由A、B、C、D共圆及A、B、F、H共圆,∴∠BFG=∠DAB=∠BCG,∴B、G、F、H共圆,∴∠BGC=∠AFB=90°,∴BG⊥GC,∴四边形BFCG是矩形.
点评:
此题主要考查了四点共圆的性质以及四点共圆的证明,正确应用四点共圆的性质是解题关键.
看了 (本题证明值可直接利用如下结...的网友还看了以下:
点与圆的位置关系有三种:点在圆上、点在圆内、点在圆外.设圆的半径为r,点到圆心的距离为d.若点在圆 2020-07-26 …
图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B是AE的中点,那么阴影部分的周 2020-07-26 …
如图,将一个半径为R的导电金属圆环串联接入电路中,电路的电流强度为I,接入点a、b是圆环直径上的两 2020-07-31 …
23.若椭圆(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当0<e≤根号2减一时,可在 2020-08-02 …
(2013•南通)如图,用尺规作出∠OBF=∠AOB,作图痕迹MN是()A.以点B为圆心,OD为半径 2020-11-12 …
(2014•任城区二模)我国钓鱼岛及周边海域生物种类繁多.有关下列四种生物的描述,不正确的是()A. 2020-12-09 …
我国钓鱼岛及周边海域生物种类繁多。有关下列四种生物的描述,不正确的是A.剑尖枪乌贼身体柔软,是软体动 2020-12-14 …
(2013•江西)我国钓鱼岛及其周边海域生物种类繁多,如图是该区域的四种生物,有关说法不正确的是() 2020-12-17 …
如图,电流从A点分两路对称地且电流强度相等地通过圆形支路再汇合于B点,则圆环中心处O点的磁感应强度的 2021-01-13 …
如图所示,电流从A点分两路对称地通过圆环形支路再汇合于B点,则对圆环中心处O点的磁感应强度的描述正确 2021-01-13 …