早教吧作业答案频道 -->其他-->
已知△ABC是⊙O的内接三角形,BT为⊙O的切线,B为切点,P为直线AB上一点,过点P作BC的平行线交直线BT于E,交直线AC于点F.(1)当点P在线段AB上时,(如图1)求证:PA•PB=PE•PF.(2)在图2
题目详情
已知△ABC是⊙O的内接三角形,BT为⊙O的切线,B为切点,P为直线AB上一点,过点P作BC的平行线交直线BT于E,交直线AC于点F.
(1)当点P在线段AB上时,(如图1)求证:PA•PB=PE•PF.
(2)在图2中画出当点P在线段AB的延长线上时,(1)中的结论是否仍然成立?如果成立,请证明,如果不成立,请说明理由.

(1)当点P在线段AB上时,(如图1)求证:PA•PB=PE•PF.
(2)在图2中画出当点P在线段AB的延长线上时,(1)中的结论是否仍然成立?如果成立,请证明,如果不成立,请说明理由.

▼优质解答
答案和解析
(1)证明:∵BT为切线,BA为弦.
∴∠ABE=∠C,∠APF=∠EPB.
又∵EF∥BC,
∴∠C=∠AFP,∴∠ABE=∠AFP.
∴△APF∽△EPB,
∴
=
,
即PA•PB=PE•PF.
(2)

结论仍然成立.
证明:∵BT为切线,BC为弦,
∴∠CBE=∠A.
∵PF∥BC,
∴∠CBE=∠PEB.
∴∠PEB=∠A.
又∠EPB=∠APF,
∴△APF∽△EPB,
∴
=
,
即PA•PB=PE•PF.
∴∠ABE=∠C,∠APF=∠EPB.
又∵EF∥BC,
∴∠C=∠AFP,∴∠ABE=∠AFP.
∴△APF∽△EPB,
∴
PA |
PE |
PF |
PB |
即PA•PB=PE•PF.
(2)

结论仍然成立.
证明:∵BT为切线,BC为弦,
∴∠CBE=∠A.
∵PF∥BC,
∴∠CBE=∠PEB.
∴∠PEB=∠A.
又∠EPB=∠APF,
∴△APF∽△EPB,
∴
PA |
PE |
PF |
PB |
即PA•PB=PE•PF.
看了 已知△ABC是⊙O的内接三角...的网友还看了以下:
设a=(√5-1)/2,求(a^5+a^4-2a^3-a^2-a+2)/a^3-a∵2a=√5-1 2020-04-05 …
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
两道集合论的题1设ABC是全集U的任意子集.a)若A∩B=A∩C,A∩B=~A∩C,证明:B=Cb 2020-06-07 …
在三角形ABC中已知(a+b)/a=...在三角形ABC中已知(a+b)/a=sinB/(sinB 2020-06-12 …
已知三条直线a,b,c和平面β,则下列推论中正确的是()A.若a∥b,b?β,则a∥βB.若a,b 2020-07-15 …
把直线a沿水平方向平移4厘米,平移后的像为直线b,则直线a与b之间的距离为?A等于4厘米B小于4厘 2020-07-22 …
已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象 2020-07-26 …
直角三角形ABC中,BC=2,AC=6,依下列的步骤抄作折纸.(A)将A,C两点重合(B)DE为折痕 2020-11-06 …
已知三角形ABC中角ABC所对边分别为abc若ABC成等差数列b=2记角A=x,a+c=fx1已知三 2020-11-24 …
直角三角形ABC中,BC=2,AC=6,依下列的步骤抄作折纸.(A)将A,C两点重合(B)DE为折痕 2020-12-02 …