早教吧作业答案频道 -->其他-->
我们学过圆内接三角形,同样,四个顶点在圆上的四边形是圆内接四边形,下面我们来研究它的性质.(I)如图(1),连接AO、OC,则有∠B=12∠1,∠D=12∠2.∵∠1+∠2=360°∴∠B+∠D=12×3
题目详情
我们学过圆内接三角形,同样,四个顶点在圆上的四边形是圆内接四边形,下面我们来研究它的性质.
(I)如图(1),连接AO、OC,则有∠B=
∠1,∠D=
∠2.∵∠1+∠2=360°∴∠B+∠D=
×360°=180°,同理∠BAD+∠BCD=180°,即圆内接四边形对角(相对的两个角)互补.
(II)在图(2)中,∠ECD是圆内接四边形ABCD的一个外角,请你探究外角∠DCE与它的相邻内角的对角(简称内对角)∠A的关系,并证明∠DCE与∠A的关系.
(III)应用:请你应用上述性质解答下题:如图(3)已知ABCD是圆内接四边形,F、E分别为BD、AD延长线上的点,如果DE平分
∠FDC,求证:AB=AC.

(I)如图(1),连接AO、OC,则有∠B=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(II)在图(2)中,∠ECD是圆内接四边形ABCD的一个外角,请你探究外角∠DCE与它的相邻内角的对角(简称内对角)∠A的关系,并证明∠DCE与∠A的关系.
(III)应用:请你应用上述性质解答下题:如图(3)已知ABCD是圆内接四边形,F、E分别为BD、AD延长线上的点,如果DE平分
∠FDC,求证:AB=AC.

▼优质解答
答案和解析
(II)∠DCE=∠A.
证明:∵四边形ABCD是圆内接四边形,
∴∠A+∠BCD=180°,
∵∠DCE+∠BCD=180°,
∴∠DCE=∠A;
(III)证明:∵四边形ABCD是圆内接四边形,
∴∠2=∠ABC,
∵∠1=∠ADB,∠ADB=∠ACB,
∴∠1=∠ACB,
∵DE平分∠FDC,
∴∠1=∠2,
∴∠ABC=∠ACB,
∴AB=AC.
证明:∵四边形ABCD是圆内接四边形,
∴∠A+∠BCD=180°,
∵∠DCE+∠BCD=180°,
∴∠DCE=∠A;
(III)证明:∵四边形ABCD是圆内接四边形,
∴∠2=∠ABC,
∵∠1=∠ADB,∠ADB=∠ACB,
∴∠1=∠ACB,
∵DE平分∠FDC,
∴∠1=∠2,
∴∠ABC=∠ACB,
∴AB=AC.
看了 我们学过圆内接三角形,同样,...的网友还看了以下:
角A与角B是同位角,则角A与角B的关系是 2020-07-19 …
2、如图所示.∠1和∠2是一对()A、同位角B、同旁内角C、内错角D、对顶角 2020-07-23 …
下列命题中正确的是()A.互补的角是邻补角B.同位角相等C.三角形的一个外角等于任意两个内角的和D 2020-07-29 …
下列命题中,真命题是()A、相等的角是对顶角B、同旁内角互补C、平行于同一条直线的两条直线互相平行 2020-07-29 …
急求)三角形ABC内接于圆O,BC=4,S三角形ABC=6根号3,角B为锐角三角形ABC内接于圆O 2020-07-30 …
三角形ABC内接于圆O,BC=4,S三角形ABC=6被根号3,角B为锐角...三角形ABC内接于圆 2020-07-31 …
1、如图,在“A”字型图中,AB、AC被DE所截,则∠ADE与∠DEC是()A、内错角B、同旁内角 2020-08-01 …
有公共顶点的角一定是[]A.对顶角B.同位角C.内错角D.以上答案都不对 2020-08-01 …
如图,已知三角形ABC内接于一圆,角A=57度,角B=66度,过点A、B、C作该圆的外切三角形A' 2020-08-03 …
下列命题中是假命题的是()A.一个三角形中至少有两个锐角B.在同一平面内,垂直于同一直线的两条直线平 2020-11-01 …