早教吧作业答案频道 -->数学-->
两组对角分别互补的四边形具有什么性质?如题.比方说,四个角如下(逆时针):∠A=90°∠B=60°∠C=90°∠D=120°∠A与∠C互补,∠B与∠D互补.那么这个四边形具有怎样的性质(所有性质).主
题目详情
两组对角分别互补的四边形具有什么性质?
如题.比方说,四个角如下(逆时针):∠A=90° ∠B=60° ∠C=90° ∠D=120° ∠A与∠C互补 ,∠B 与∠D互补.那么这个四边形具有怎样的性质(所有性质).主要就是 对角线,角,边 或 其他的 所有 性质..有重金!
如题.比方说,四个角如下(逆时针):∠A=90° ∠B=60° ∠C=90° ∠D=120° ∠A与∠C互补 ,∠B 与∠D互补.那么这个四边形具有怎样的性质(所有性质).主要就是 对角线,角,边 或 其他的 所有 性质..有重金!
▼优质解答
答案和解析
内接四边形对角互补,那么 圆的内接四边形的对角互补,并且任意一个外角等于它的内对角
四个点在圆上四边形是圆的内接四边形.圆内接四边形对角互补,外角等于它的内对角不是所有的四边形对角都互补,但是对角互补的四边形一定是圆内接四边形~证明过程:已知:四边形ABCD中,∠BAD+∠BCD=180°
求证:四边形ABCD内接于圆.
证明:假设四边形ABCD不内接于圆,过B、A、D三点作⊙O,则点C不在⊙O上.
(1)如果点C在⊙O外,连结AC交⊙O于点P,连结DP、BP,
则∠APD>∠ACD,∠APB>∠ACB
∴∠APD+∠APB>∠ACD+∠ACB
即∠DPB>∠BCD
∵西边形ABPD内接于⊙O,
∴∠BAD+∠BPD=180°
∴∠BAD+∠BCD<180°
这与已知∠BAD+∠BCD=180°相矛盾,所以点C不可能在⊙O外.
(2)如果点C在⊙O内,连结AC并延长交⊙O于点Q,连结DQ,CQ,
〔一下用类似的方法证明点C不可能在⊙O内〕
由(1)和(2)知,点C只能在⊙O上,即假设不成立.
∴四边形ABCD内接于圆.
(请参阅初三几何课本) 稍微等一会儿 我正和同学在激烈的讨论.
四个点在圆上四边形是圆的内接四边形.圆内接四边形对角互补,外角等于它的内对角不是所有的四边形对角都互补,但是对角互补的四边形一定是圆内接四边形~证明过程:已知:四边形ABCD中,∠BAD+∠BCD=180°
求证:四边形ABCD内接于圆.
证明:假设四边形ABCD不内接于圆,过B、A、D三点作⊙O,则点C不在⊙O上.
(1)如果点C在⊙O外,连结AC交⊙O于点P,连结DP、BP,
则∠APD>∠ACD,∠APB>∠ACB
∴∠APD+∠APB>∠ACD+∠ACB
即∠DPB>∠BCD
∵西边形ABPD内接于⊙O,
∴∠BAD+∠BPD=180°
∴∠BAD+∠BCD<180°
这与已知∠BAD+∠BCD=180°相矛盾,所以点C不可能在⊙O外.
(2)如果点C在⊙O内,连结AC并延长交⊙O于点Q,连结DQ,CQ,
〔一下用类似的方法证明点C不可能在⊙O内〕
由(1)和(2)知,点C只能在⊙O上,即假设不成立.
∴四边形ABCD内接于圆.
(请参阅初三几何课本) 稍微等一会儿 我正和同学在激烈的讨论.
看了 两组对角分别互补的四边形具有...的网友还看了以下:
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解, 2020-04-13 …
弹性双原子分子到底有几个自由度?7个还是6个?按照一般的物理学常识,两个自由原子应该有6个自由度, 2020-05-12 …
OSI参考模型定义了网络互连的7个层次,以实现开放系统环境中的互连性、互操作性与应用的______。 2020-05-23 …
配置测试A.是指检查软件之间是否正确交互和共享信息B.是交互适应性、实用性和有效性的集中体现C. 2020-05-23 …
进程具有3个特性,下列特性中,哪个不是进程的特性?()A.异步性B.可重入性C.并发性D.交互性 2020-05-24 …
软件的互操作性是指______。A.软件的可移植性B.人机界面的可交互性C.连接一个系统和另一个系统 2020-05-26 …
软件的互操作性是指______。A.软件的可移植性B.人机界面的可交互性C.多用户之间的可交互性D. 2020-05-26 …
软件的可互操作性,是指多个软件元素相互()并协同完成任务的能力。 2020-05-31 …
把两个磁性很强的磁铁分别放在两辆小车上,磁铁的同行磁极相对,小车放在光滑的水平桌面上,推动一下小车, 2020-11-01 …
下列说法正确的是()A.互为手性的分子具有相似的性质,故生产药物时不必分离B.NF3分子立体构型为三 2020-12-01 …