早教吧作业答案频道 -->数学-->
已知函数f(x)对任意实数x均有f(x0=kf(x+2),其中常数k为负数,且f(x)在区间[0,2]上有表达式f(x)=x(x-2)1、求f(-1),f(2.5)的值2、写出f(x)在[-3,3]上的表达式,并讨论f(x)在[-3,3]上的单调性3、写出f(x)在[-3,3]上
题目详情
已知函数f(x)对任意实数x均有f(x0=kf(x+2),其中常数k为负数,且f(x)在区间[0,2]上有表达式f(x)=x(x-2)
1、求f(-1),f(2.5)的值
2、写出f(x)在[-3,3]上的表达式,并讨论f(x)在[-3,3]上的单调性
3、写出f(x)在[-3,3]上的最小值与最大值,并求出相应自变量的取值
1、求f(-1),f(2.5)的值
2、写出f(x)在[-3,3]上的表达式,并讨论f(x)在[-3,3]上的单调性
3、写出f(x)在[-3,3]上的最小值与最大值,并求出相应自变量的取值
▼优质解答
答案和解析
首先申明一下这道题是我自己做的,对错我不能保证,你觉得有道理就采纳吧~
(1)∵f(x)=kf(x+2) ∴f(0.5)=kf(2.5)=f(0.5)/k=-3/(4k)
同理f(-1)=kf(1)=-k
(2)∵f(x)=kf(x+2) ∴f(x+2)=f(x)/k
因此f(2)到f(3)可换为f(0+2)到f(1+2)
即x∈【0,1】时f(x+2)=f(x)/k 因为【0,1】包含于【0,2】
所以f(x+2)=x*(x-2)/k 所以f(t)=(t-4)(x-2)/k t∈【2,3】
即f(x)=(x-4)(x-2)/k x∈【2,3】
同理当x∈【0,2】时 f(x)=x*(x-2)
当x∈【-2,0】时f(x)=kx(x-2)
当x∈【-3,-2】时f(x)=k²x(x-2)
然后根据导函数兴致球员函数单调性
(3)得出极值点为-2,0,1
然后比较f(-2),f(0),f(-1),f(3),f(-3)
(1)∵f(x)=kf(x+2) ∴f(0.5)=kf(2.5)=f(0.5)/k=-3/(4k)
同理f(-1)=kf(1)=-k
(2)∵f(x)=kf(x+2) ∴f(x+2)=f(x)/k
因此f(2)到f(3)可换为f(0+2)到f(1+2)
即x∈【0,1】时f(x+2)=f(x)/k 因为【0,1】包含于【0,2】
所以f(x+2)=x*(x-2)/k 所以f(t)=(t-4)(x-2)/k t∈【2,3】
即f(x)=(x-4)(x-2)/k x∈【2,3】
同理当x∈【0,2】时 f(x)=x*(x-2)
当x∈【-2,0】时f(x)=kx(x-2)
当x∈【-3,-2】时f(x)=k²x(x-2)
然后根据导函数兴致球员函数单调性
(3)得出极值点为-2,0,1
然后比较f(-2),f(0),f(-1),f(3),f(-3)
看了 已知函数f(x)对任意实数x...的网友还看了以下:
已知函数fx的定义域为R,对任意实数x,y满足f(x+y)=f(x)f(y)且f(x)>0,f(2 2020-05-13 …
求下列各题中的函数f(x)的解析式(1)已知f(√x+2)=x+4√x,求f(x)(2)已知f(x 2020-06-02 …
.1.∫f(x)dx=(e^x)cos2x+c,则f(x)=A.(e^x)(cos2x-2sin. 2020-07-10 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
已知集合M={f(x)|f(-x)=f(x),x∈R};N={f(x)|f(-x)=-f(x),x 2020-07-30 …
已知定义在R上的函数f(x)是奇函数且满足f(3/2-x)=f(x),f(3/2-x)=f(x)f 2020-08-01 …
已知f(x)的求导f`(x)=-2则lim[f(x0-3△x)-f(x0+△x)]/△x为多少我令他 2020-11-01 …
如果函数y=f(x)的图象关于x=a和x=b都对称,证明这个函数满足f[2(a-b)+x]=f(x) 2020-11-19 …
对于函数y=f(x)若f(x)=x,则称x为函数y=f(x)的不动点,对于函数y=f(x),若f[f 2020-12-08 …
已知函数fx的定义域为R,对任意实数x,y满足f(x+y)=f(x)f(y)且f(x)>0,f(2) 2020-12-08 …