早教吧作业答案频道 -->其他-->
如图,D是等边△ABC外的一点,DB=DC,∠BDC=120°,且E、F分别在AB和AC上.(1)求证:AD是BC的垂直平分线;(2)若ED平分∠BEF,证明:①FD平分∠EFC;②△AEF的周长是BC长的2倍.
题目详情

(1)求证:AD是BC的垂直平分线;
(2)若ED平分∠BEF,证明:
①FD平分∠EFC;
②△AEF的周长是BC长的2倍.
▼优质解答
答案和解析
证明:(1)∵△ABC是等边三角形,
∴AB=AC,
∴A在BC的垂直平分线上,
∵BD=DC,
∴D在BC的垂直平分线上,
∴AD是BC的垂直平分线;
(2)①
过D作DM⊥EF,连接AD,
∵AD是BC的垂直平分线,
∴AD平分∠BAC,
∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∵BD=DC,∠BDC=120°,
∴∠DBC=∠DCB=30°,
∴∠ABD=∠ACD=90°,
∴DB⊥AB,DC⊥AC,
∵DM⊥EF,ED平分∠BEF,AD平分∠BAC,
∴BD=DM,BD=DC,
∴DM=DC,
∴FD平分∠EFC;
②
∵DE平分∠BEF,DB⊥AB,DM⊥EF,DF平分∠CFE,
∴DB=DM,DM=DC,∠EBD=∠EMD=90°,
在△EBD和△EMD中
,
∴△EBD≌△EMD,
∴EM=BE,
同理FC=FM,
∴EF=BE+CF,
∴△AEF的周长是AE+EF+AF=AE+BE+CF+AF=2AB=2BC.
∴AB=AC,
∴A在BC的垂直平分线上,
∵BD=DC,
∴D在BC的垂直平分线上,
∴AD是BC的垂直平分线;
(2)①

过D作DM⊥EF,连接AD,
∵AD是BC的垂直平分线,
∴AD平分∠BAC,
∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∵BD=DC,∠BDC=120°,
∴∠DBC=∠DCB=30°,
∴∠ABD=∠ACD=90°,
∴DB⊥AB,DC⊥AC,
∵DM⊥EF,ED平分∠BEF,AD平分∠BAC,
∴BD=DM,BD=DC,
∴DM=DC,
∴FD平分∠EFC;
②

∵DE平分∠BEF,DB⊥AB,DM⊥EF,DF平分∠CFE,
∴DB=DM,DM=DC,∠EBD=∠EMD=90°,
在△EBD和△EMD中
|
∴△EBD≌△EMD,
∴EM=BE,
同理FC=FM,
∴EF=BE+CF,
∴△AEF的周长是AE+EF+AF=AE+BE+CF+AF=2AB=2BC.
看了 如图,D是等边△ABC外的一...的网友还看了以下:
当抽样单位数减少1/2,重复抽样平均误差将()。A.B.为原来的1.414倍C.D.增加0.414. 2020-06-07 …
概率题--急!知道1-e^-5-5e^-5(1减e的-5次幂减5倍的e的-5次幂)等于0.9596 2020-06-09 …
现有A、B、C、D、E五种元素,A的原子中没有中子;B原子最外层电子数是次外层3倍;C原子失去1个 2020-07-29 …
已知e为自然对数的底数,若对任意的x1∈[0,1],总存在唯一的x2∈[-1,1],使得x1+x2 2020-08-02 …
若地球质量加倍,半径加倍,则:(A)人的重量会增加(B)人跳高能力加倍(C)同一单摆的周期成为原本的 2020-10-30 …
已知方程lnx-ax+1=0(a为实常数)有两个不等实根,则实数a的取值范围是()A.(0,e)B. 2020-11-06 …
二阶微分方程求解题目2xy''=y'令p=y',则y''=p'=>2xp'=p=>2*dp/p=dx 2020-11-16 …
用C++求不超过30000E数列的最大E数的值/*数列:E(1)=E(2)=1E(n)=(n-1)* 2020-11-20 …
y+c=x+bc,b都是常数他们都不等于0.现在问2个基础的问题,假如他们2边用1除,是变成1/(y 2020-11-20 …
口径八公尺的望远镜,其聚光力是口径四公尺望远镜的几倍?A、1倍B、2倍C、4倍D、8倍E、16年 2020-11-26 …