早教吧作业答案频道 -->其他-->
1,、下列函数中周期为1的函数是()a,y=2cos²x-1b,y=sinπx×cosπxc,y=tan(πx/2+π/3)d,y=sinπx+cosπ2、已知sinα-cosα=-5/4,则sin2α=3、设x1=4,x2=5,x3=6,则该样本的标准差为(顺便写一下方差和标准差的公
题目详情
1,、下列函数中周期为1的函数是()
a,y=2cos²x-1 b,y=sinπx×cosπx c,y=tan(πx/2+π/3) d,y=sinπx+cosπ
2、已知sinα-cosα=-5/4,则sin2α=
3、设x1=4,x2=5,x3=6,则该样本的标准差为(顺便写一下方差和标准差的公式)
4、在圆x²+y²=4上与直线4x+3y-12=0距离最短的点的坐标为
A,(6/5,8/5) B,(8/5,6/5) C,(-8/5,6/5) D,(-6/5,-8/5)
5、点P(a,b,c)到坐标平面xOy的距离是
6、设f(x)=|sin(x+π/3)|(π∈R),则f(x)=
A、在区间[2π/3,7π/6]上是增函数
B、在区间[-π,-π/2]上是减函数
C、在区间[-π/3,π/4]上是增函数
D、在区间[π/3,5π/5π/6]上是减函数
7、一个水平放置的平面图形的斜二测直观图是一个底角45°,腰和上底均为1的等腰三角形,则这个平面图形的面积是
a,y=2cos²x-1 b,y=sinπx×cosπx c,y=tan(πx/2+π/3) d,y=sinπx+cosπ
2、已知sinα-cosα=-5/4,则sin2α=
3、设x1=4,x2=5,x3=6,则该样本的标准差为(顺便写一下方差和标准差的公式)
4、在圆x²+y²=4上与直线4x+3y-12=0距离最短的点的坐标为
A,(6/5,8/5) B,(8/5,6/5) C,(-8/5,6/5) D,(-6/5,-8/5)
5、点P(a,b,c)到坐标平面xOy的距离是
6、设f(x)=|sin(x+π/3)|(π∈R),则f(x)=
A、在区间[2π/3,7π/6]上是增函数
B、在区间[-π,-π/2]上是减函数
C、在区间[-π/3,π/4]上是增函数
D、在区间[π/3,5π/5π/6]上是减函数
7、一个水平放置的平面图形的斜二测直观图是一个底角45°,腰和上底均为1的等腰三角形,则这个平面图形的面积是
▼优质解答
答案和解析
解
1、函数周期为1的函数是(b,y=sinπx×cosπx )
2、因为sinα-cosα=-5/4
所以1-sin2α=25/16
所以sin2α=1-25/16=-9/16
3、方差的公式
平均数:M=(x1+x2+x3+…+xn)/n
(n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)
方差公式:S^2=〈(M-x1)^2+(M-x2)^2+(M-x3)^2+…+(M-xn)^2〉╱n
标准差公式:δ=√S^2
对本题而言:
M=(4+5+6)/3=5
S^2=[(5-4)^2+(5-5)^2+(6-5)^2]╱3=2/3
标准差公式:δ=√(2/3)=√6/3
4、根据画图可知,在圆x²+y²=4上与直线4x+3y-12=0距离最短的点应在第一象限,
即坐标x和y都>0,且该点圆的切线的斜率应与直线4x+3y-12=0的斜率k=-4/3相等.
于是有y=√(4-x²)
y'=-x/√(4-x²)
令y'=-x/√(4-x²)=k=-4/3
解得x=8/5 (x=-8/5舍去)
y=√(4-x²)=6/5
于是,在圆x²+y²=4上与直线4x+3y-12=0距离最短的点的坐标为(8/5,6/5)
故答案应选:B,(8/5,6/5)
5、
p点(a,b,c)到平面:AX+BY+CZ+D=0的距离
d=|Aa+Bb+Cc+D|/(A^2+B^2+C^2)^(1/2)
6、答案为 A、在区间[2π/3,7π/6]上是增函数
7、平面图形的面积是 1*2/2=1
1、函数周期为1的函数是(b,y=sinπx×cosπx )
2、因为sinα-cosα=-5/4
所以1-sin2α=25/16
所以sin2α=1-25/16=-9/16
3、方差的公式
平均数:M=(x1+x2+x3+…+xn)/n
(n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)
方差公式:S^2=〈(M-x1)^2+(M-x2)^2+(M-x3)^2+…+(M-xn)^2〉╱n
标准差公式:δ=√S^2
对本题而言:
M=(4+5+6)/3=5
S^2=[(5-4)^2+(5-5)^2+(6-5)^2]╱3=2/3
标准差公式:δ=√(2/3)=√6/3
4、根据画图可知,在圆x²+y²=4上与直线4x+3y-12=0距离最短的点应在第一象限,
即坐标x和y都>0,且该点圆的切线的斜率应与直线4x+3y-12=0的斜率k=-4/3相等.
于是有y=√(4-x²)
y'=-x/√(4-x²)
令y'=-x/√(4-x²)=k=-4/3
解得x=8/5 (x=-8/5舍去)
y=√(4-x²)=6/5
于是,在圆x²+y²=4上与直线4x+3y-12=0距离最短的点的坐标为(8/5,6/5)
故答案应选:B,(8/5,6/5)
5、
p点(a,b,c)到平面:AX+BY+CZ+D=0的距离
d=|Aa+Bb+Cc+D|/(A^2+B^2+C^2)^(1/2)
6、答案为 A、在区间[2π/3,7π/6]上是增函数
7、平面图形的面积是 1*2/2=1
看了 1,、下列函数中周期为1的函...的网友还看了以下:
一个mathematica程序添加作图语句Clear[x,y,n,h,S1,S2,S3,S4,i] 2020-05-16 …
谁会用MATLAB遗传算法求函数y=(x2+1)/x1+x3^2*x2+x3^2+x3*x2的极小 2020-05-17 …
越快越好已知X1,X2,X3,…,X2008都为整数,其中-1≤Xi≤2(i=1,2,3,…,20 2020-05-17 …
设X1,X2,X3,X4,X5,X6是来自正态总体N(0,4)的样本,试确定常数a,b使得Y=a( 2020-06-18 …
设xi(i=1,2,3,4)为正实数i为下标,满足x1≤1,x1+x2≤5x1+x2+x3≤14, 2020-07-29 …
已知x,y∈R,i为虚数单位,且(x-2)i-y=-1+i,则(1-i)x+y的值为()A.4B. 2020-08-02 …
已知x,y∈R,i为虚数单位,且(x-2)i-y=-1+i,则(1+i)x+y的值为()A.4B. 2020-08-02 …
X1+Ai*X2+Ai^2*X3+Ai^3*X4=Ai^4,i=1,2,3,4为什么就能快速得出X 2020-08-03 …
(2014•聊城一模)已知x,y∈R,i为虚数单位,且(x-2)i-y=-1+i,则(1-i)x+y 2020-11-01 …
设X1,X2,X3.xn独立分布,其方差σ^2>0,令Y=1/n∑Xi(这里我理解为Y是X的平均值) 2020-12-31 …