早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知抛物线y=-14x2+bx+4与x轴相交于AB两点,与y轴相交于点C,若已知A点的坐标为A(-2,0).(1)求抛物线的表达式及它的对称轴方程;(2)求点C的坐标,并求线段BC所在直线的函数表

题目详情
如图,已知抛物线y=-
1
4
x2+bx+4与x轴相交于AB两点,与y轴相交于点C,若已知A点的坐标为A(-2,0).(1)求抛物线的表达式及它的对称轴方程;
(2)求点C的坐标,并求线段BC所在直线的函数表达式;
(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)∵抛物线y=-
1
4
x2+bx+4的图象经过点A(-2,0),
∴-
1
4
×(-2)2+b×(-2)+4=0,
解得:b=
3
2

∴抛物线解析式为 y=-
1
4
x2+
3
2
x+4,
又∵y=-
1
4
x2+
3
2
x+4=-
1
4
(x-3)2+
25
4

∴对称轴方程为:x=3.

(2)在y=-
1
4
x2+
3
2
x+4中,令x=0,得y=4,
∴C(0,4);
令y=0,即-
1
4
x2+
3
2
x+4=0,整理得x2-6x-16=0,
解得:x=8或x=-2,
∴A(-2,0),B(8,0).
设直线BC的解析式为y=kx+b,
把B(8,0),C(0,4)的坐标分别代入解析式,得:
8k+b=0
b=4

解得:
k=−
1
2
b=4

∴直线BC的解析式为:y=-
作业帮用户 2017-11-06
问题解析
(1)利用待定系数法求出抛物线解析式,利用配方法或利用公式x=-
b
2a
求出对称轴方程;
(2)在抛物线解析式中,令x=0,可求出点C坐标;令y=0,可求出点B坐标.再利用待定系数法求出直线BD的解析式;
(3)本问为存在型问题.若△ACQ为等腰三角形,则有三种可能的情形,需要分类讨论,逐一计算,避免漏解.
名师点评
本题考点:
二次函数综合题.
考点点评:
本题考查了二次函数与一次函数的图象与性质、待定系数法、勾股定理、等腰三角形的判定等知识点.难点在于第(3)问,符合条件的等腰三角形△ACQ可能有多种情形,需要分类讨论.
我是二维码 扫描下载二维码