早教吧作业答案频道 -->其他-->
(2013•大兴区一模)如图,直三棱柱ABC-A1B1C1中,△ABC是等边三角形,D是BC的中点.(Ⅰ)求证:直线A1D⊥B1C1;(Ⅱ)判断A1B与平面ADC1的位置关系,并证明你的结论.
题目详情

(Ⅰ)求证:直线A1D⊥B1C1;
(Ⅱ)判断A1B与平面ADC1的位置关系,并证明你的结论.
▼优质解答
答案和解析
证明:(Ⅰ)在直三棱柱ABC-A1B1C1中,AA1⊥面ABC,∴AA1⊥BC,
在等边△ABC中,D是BC中点,∴AD⊥BC
∵在平面A1AD中,A1A∩AD=A,∴BC⊥面A1AD
又∵A1D⊂面A1AD,∴A1D⊥BC
在直三棱柱ABC-A1B1C1中,四边形BCC1B1是平行四边形,∴B1C1∥BC
∴A1D⊥B1C1
(Ⅱ) 在直三棱柱ABC-A1B1C1中,四边形ACC1A1是平行四边形,
在平行四边形ACC1A1中联结A1C,交于AC1点O,连接DO.
故O为A1C中点.
在三角形A1CB中,D 为BC中点,O为A1C中点,∴DO∥A1B.
因为DO⊂平面DAC1,A1B⊄平面DAC1,∴A1B∥面ADC1
∴A1B与面ADC1平行.
在等边△ABC中,D是BC中点,∴AD⊥BC
∵在平面A1AD中,A1A∩AD=A,∴BC⊥面A1AD
又∵A1D⊂面A1AD,∴A1D⊥BC
在直三棱柱ABC-A1B1C1中,四边形BCC1B1是平行四边形,∴B1C1∥BC
∴A1D⊥B1C1
(Ⅱ) 在直三棱柱ABC-A1B1C1中,四边形ACC1A1是平行四边形,
在平行四边形ACC1A1中联结A1C,交于AC1点O,连接DO.
故O为A1C中点.
在三角形A1CB中,D 为BC中点,O为A1C中点,∴DO∥A1B.
因为DO⊂平面DAC1,A1B⊄平面DAC1,∴A1B∥面ADC1
∴A1B与面ADC1平行.
看了 (2013•大兴区一模)如图...的网友还看了以下:
以下哪个不包含在证书中?()A、密钥采取的算法B、公钥及其参数C、私钥及其参数D、签发证书的CA名 2020-05-26 …
一道高中不等式的证明题a>b>0,如何证明2a+b/a+2b>a/b不总成立?(正证、反证皆可)原 2020-06-06 …
在解决问题:“证明数集A={x|2<x≤3}没有最小数”时,可用反证法证明.假设a(2<a≤3)是 2020-06-17 …
设n阶矩阵A=E-a*a^T,其中a是n维非零列向量,证明1.A^2=A的充要条件是a^T*a设n 2020-06-23 …
下面的三角函数证明题希望给出详细证明在△ABC中,若a+b+c=1,求证:a2+b2+c2+4ab 2020-07-21 …
在解决问题:“证明数集没有最小数”时,可用反证法证明.假设a(2<a≤3)是A中的最小数,则取,可 2020-07-30 …
一.设X,Y,Z为正数,且x^2+y^2+Z^2=1,求证:xy/z+yz/x+zx/y>=根号3二 2020-10-31 …
关于A=0的证明设A是n阶实对称矩阵,且A²=0证明A=0.其中一种证明方法是这样的:由A(T)A= 2020-11-03 …
3、下列关于在中国境内填写票据和结算凭证的表述中,不正确的是()A、票据和结算凭证的中文大3、下列关 2020-12-07 …
在法律文书的理由中除应论证认定事实的理由外,更应论证()A.当事人参加诉讼的理由B.在法律文书的理由 2020-12-10 …