早教吧作业答案频道 -->数学-->
把地球当作半径为R的球,地球上有A'.B两地,A'在西径10度,北纬45度,B在东经125度的赤道上,求A',B的球面距离
题目详情
把地球当作半径为R的球,地球上有A'.B两地,A'在西径10度,北纬45度,B在东经125度的赤道上,求A',B的球面距离
▼优质解答
答案和解析
楼上的说错了,B 在赤道上呢.
今天看了几道高考题,突然想起你这道题,发觉有种很方便的解答办法:
【空间向量法】【2πR/3】【1.34×10^7 m】
首先我们考虑在球坐标下的点怎么转换为直角坐标,也就是建立一个合适的坐标系,在给出经纬度的情况下,如何得到点的坐标
方便起见,我们在赤道平面上建立 xOy 平面,z 轴为北极点.并且 0 度经线所在平面与 xOz 重合【最好自己画画图看看,这个坐标系对于求解球面的问题是很有用的】
设点 P 的纬度为θ,经度为φ,北纬为正,南纬为负,东经为正,西经为负.
θ∈[-π/2,π/2]
φ∈[-π,π]
作出 P 点所在的纬线圈,易得到纬线圈平面与 xOy 平面的距离为 Rsinθ
即 P 点的第三个分量为 Rsinθ
P 点所在的纬线圈的半径为 Rcosθ
所以在纬线圈上 P 的平面坐标为 Rcosθ(cosφ,sinφ)
即,P 点的前两个分量为(Rcosθcosφ,Rcosθsinφ)
因此,P = (Rcosθcosφ,Rcosθsinφ,Rsinθ)
【推论,令 R = 1 就是单位球的情形.这是可以记下来的好的结论.】
好了,接下来我们利用这坐标计算就可以了,一种好的思路可以批量解决问题.
假设两点分别在
P1 经度θ1 ,纬度φ1
P2 经度θ2 ,纬度φ2
那么他们的坐标分别为
P1 = R×(cosθ1×cosφ1,cosθ1×sinφ1,sinθ1)
P2 = R×(cosθ2×cosφ2,cosθ2×sinφ2,sinθ2)
所以内积为
P1·P2 = R×R×(cosθ1×cosφ1×cosθ2×cosφ2 + cosθ1×sinφ1×cosθ2×sinφ2 + sinθ1×sinθ2)
又
|P1|×|P2| = R×R
所以
cos
= cosθ1×cosφ1×cosθ2×cosφ2 + cosθ1×sinφ1×cosθ2×sinφ2 + sinθ1×sinθ2
= cosθ1×cosθ2×cos(φ2 - φ1) + sinθ1×sinθ2
好了,针对这道题目,可以把数据直接代入上面的公式就可以了.
θ1 = 45°,φ1 = -10°,θ2 = 0°,φ2 = 125°
所以
cosθ1 = sinθ1 = √2/2
cosθ2 = 1 ,sinθ2 = 0
cos(φ2 - φ1) = cos(3π/4) = -√2/2
所以
cos = √2/2×1×(-√2/2) + 0 = -1/2
= arccos(-1/2) = 2π/3
这就是 P1,P2 两点之间的大圆的圆弧的圆心角α
所以球面距离就是
R×α = 2πR/3
地球半径 R ≈ 6.4×10^6 m
所以是 1.34×10^7 m
【解答完毕】
今天看了几道高考题,突然想起你这道题,发觉有种很方便的解答办法:
【空间向量法】【2πR/3】【1.34×10^7 m】
首先我们考虑在球坐标下的点怎么转换为直角坐标,也就是建立一个合适的坐标系,在给出经纬度的情况下,如何得到点的坐标
方便起见,我们在赤道平面上建立 xOy 平面,z 轴为北极点.并且 0 度经线所在平面与 xOz 重合【最好自己画画图看看,这个坐标系对于求解球面的问题是很有用的】
设点 P 的纬度为θ,经度为φ,北纬为正,南纬为负,东经为正,西经为负.
θ∈[-π/2,π/2]
φ∈[-π,π]
作出 P 点所在的纬线圈,易得到纬线圈平面与 xOy 平面的距离为 Rsinθ
即 P 点的第三个分量为 Rsinθ
P 点所在的纬线圈的半径为 Rcosθ
所以在纬线圈上 P 的平面坐标为 Rcosθ(cosφ,sinφ)
即,P 点的前两个分量为(Rcosθcosφ,Rcosθsinφ)
因此,P = (Rcosθcosφ,Rcosθsinφ,Rsinθ)
【推论,令 R = 1 就是单位球的情形.这是可以记下来的好的结论.】
好了,接下来我们利用这坐标计算就可以了,一种好的思路可以批量解决问题.
假设两点分别在
P1 经度θ1 ,纬度φ1
P2 经度θ2 ,纬度φ2
那么他们的坐标分别为
P1 = R×(cosθ1×cosφ1,cosθ1×sinφ1,sinθ1)
P2 = R×(cosθ2×cosφ2,cosθ2×sinφ2,sinθ2)
所以内积为
P1·P2 = R×R×(cosθ1×cosφ1×cosθ2×cosφ2 + cosθ1×sinφ1×cosθ2×sinφ2 + sinθ1×sinθ2)
又
|P1|×|P2| = R×R
所以
cos
= cosθ1×cosφ1×cosθ2×cosφ2 + cosθ1×sinφ1×cosθ2×sinφ2 + sinθ1×sinθ2
= cosθ1×cosθ2×cos(φ2 - φ1) + sinθ1×sinθ2
好了,针对这道题目,可以把数据直接代入上面的公式就可以了.
θ1 = 45°,φ1 = -10°,θ2 = 0°,φ2 = 125°
所以
cosθ1 = sinθ1 = √2/2
cosθ2 = 1 ,sinθ2 = 0
cos(φ2 - φ1) = cos(3π/4) = -√2/2
所以
cos = √2/2×1×(-√2/2) + 0 = -1/2
= arccos(-1/2) = 2π/3
这就是 P1,P2 两点之间的大圆的圆弧的圆心角α
所以球面距离就是
R×α = 2πR/3
地球半径 R ≈ 6.4×10^6 m
所以是 1.34×10^7 m
【解答完毕】
看了 把地球当作半径为R的球,地球...的网友还看了以下:
过圆外一点作圆的切线,求切点坐标已知圆的圆心(a,b),半径r,圆外一点(c,d),过该点作圆的两 2020-04-27 …
已知圆C的圆心坐标为(a,b),半径为r,用向量方法求与圆C相切于(X0,Y0)的切线方程(结果用 2020-05-13 …
关于力的分解问题物体A B经无摩擦的定滑轮用细线连在一起,A物体受水平向右的力F的作用,此时B匀速 2020-05-17 …
a,b两个轮子,滚过相同距离,a滚60圈,b滚50圈,a,b半径差为10cm,求路长. 2020-07-07 …
求解一概率题.某城市中发行2种报纸A,B.经调查,在这2种报纸的订户中,订阅A报的有45%,订阅B 2020-07-10 …
4.宏定义“#defineDIV(a,b)a/b”,经DIV(x+5,y-5)引用,替换展开后是. 2020-07-10 …
如图,∠BAC=90°,AB=22,AC=28.点P从B点出发沿B→A→C路径向终点C运动;点Q从 2020-07-17 …
已知三角形ABC的三个顶点,A(1,3)B(-4,1)C(2,-1)1.若三角形ABC中任意一点P 2020-08-02 …
1已知球的两个小圆面积相等,求证这两个小圆所在的平面到球心的距离相等:2在半径为R的球面上有两点A 2020-08-02 …
两个导体球A,B半径分别为R1,R2,相距很远且用细导线相连,给A球带电荷量Q,求两球的电荷量及电势 2021-01-09 …