早教吧作业答案频道 -->其他-->
已知,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.(1)如图1,求证:CD⊥AB;(2)请写出你在(1)的证明过程中应用的两个互逆的真命题;(3)将△ADC沿CD所在直线翻折,A点
题目详情
已知,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.
(1)如图1,求证:CD⊥AB;
(2)请写出你在(1)的证明过程中应用的两个互逆的真命题;
(3)将△ADC沿CD所在直线翻折,A点落在BD边所在直线上,记为A′点,
①如图2,若∠B=34°,求∠A′CB的度数;
②若∠B=n°,请直接写出∠A′CB的度数(用含n的代数式表示).

(1)如图1,求证:CD⊥AB;
(2)请写出你在(1)的证明过程中应用的两个互逆的真命题;
(3)将△ADC沿CD所在直线翻折,A点落在BD边所在直线上,记为A′点,
①如图2,若∠B=34°,求∠A′CB的度数;
②若∠B=n°,请直接写出∠A′CB的度数(用含n的代数式表示).

▼优质解答
答案和解析
(1)∵∠ACB=90°,
∴∠A+∠B=90°,
∵∠ACD=∠B,
∴∠A+∠ACD=90°,
∴∠ADC=90°,
∴CD⊥AB;
(2)两个互逆的真命题为:直角三角形中两锐角互余;两锐角互余的三角形为直角三角形;
(3)①∵∠B=34°,
∴∠ACD=34°,
∴∠BCD=90°-34°=56°,
∵△ADC沿CD所在直线翻折,A点落在BD边所在直线上,记为A′点,
∴∠A′CD=∠ACD=34°,
∴∠A′CB=∠BCD-∠A′CD=56°-34°=22°;
②∵∠B=n°,
∴∠ACD=n°,
∴∠BCD=90°-n°,
∵△ADC沿CD所在直线翻折,A点落在BD边所在直线上,记为A′点,
∴∠A′CD=∠ACD=n°,
∴∠A′CB=∠BCD-∠A′CD=90°-n°-n°=90°-2n°.
∴∠A+∠B=90°,
∵∠ACD=∠B,
∴∠A+∠ACD=90°,
∴∠ADC=90°,
∴CD⊥AB;
(2)两个互逆的真命题为:直角三角形中两锐角互余;两锐角互余的三角形为直角三角形;
(3)①∵∠B=34°,
∴∠ACD=34°,
∴∠BCD=90°-34°=56°,
∵△ADC沿CD所在直线翻折,A点落在BD边所在直线上,记为A′点,
∴∠A′CD=∠ACD=34°,
∴∠A′CB=∠BCD-∠A′CD=56°-34°=22°;
②∵∠B=n°,
∴∠ACD=n°,
∴∠BCD=90°-n°,
∵△ADC沿CD所在直线翻折,A点落在BD边所在直线上,记为A′点,
∴∠A′CD=∠ACD=n°,
∴∠A′CB=∠BCD-∠A′CD=90°-n°-n°=90°-2n°.
看了 已知,在直角三角形ABC中,...的网友还看了以下:
已知圆心为C的圆经过点A(0,1)和B(-2,3),且圆心直线L:x+2y-3=0上1求圆C标准方 2020-04-27 …
一道关于双曲线C的问题已知双曲线C的中心在原点,对称轴为坐标轴,其一条渐近线方程是x+y=0,且双 2020-05-15 …
高中参数方程题已知P点,它的坐标是(1+cosa,sina),参数a属于0到π,点Q在切线C上,C 2020-05-16 …
已知圆心C在x轴上的圆过点A(2,2)和B(4,0).(1)求圆C的方程;(2)求过点M(4,6) 2020-06-09 …
1已知圆C的圆心再直线Y=2X上,圆C截Y轴所得的玄长为6.且与X轴相切,试求圆C的方程.2求过原 2020-07-02 …
已知圆C的方程为x^2+(y+1)^2=4,直线l的方程为x-y+1=01.求与圆c关于直线l对称 2020-07-09 …
1.已知曲线y=1/x(1)求曲线在点P(1,1)处的切线方程(2)求曲线过点Q(1,0)的切线方 2020-07-31 …
已知在直角坐标系xOy中,圆C的参数方程为x=3+2cosθy=-3+2sinθ(θ为参数).(Ⅰ 2020-08-02 …
(选修4-4:坐标系与参数方程)已知直线l的参数方程(t为参数),圆C的极坐标方程:ρ+2sinθ 2020-08-02 …
已知圆心为C的圆经过点A(-3,0)和点B(1,0)两点,且圆心C在直线y=x+1上.(1)求圆C 2020-08-02 …