早教吧作业答案频道 -->数学-->
如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.(1)求抛物线对应的函数表达式;(2)经过C,M两点作直线与x轴交于点N,在抛物
题目详情
如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.

(1)求抛物线对应的函数表达式;
(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由;
(4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立(请直接写出结论).

(1)求抛物线对应的函数表达式;
(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由;
(4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立(请直接写出结论).
▼优质解答
答案和解析
(1)根据题意,得
,
解得
,
∴抛物线对应的函数表达式为y=x2-2x-3;
(2)存在.连接AP,CP,
如下图所示:

在y=x2-2x-3中,令x=0,得y=-3.
令y=0,得x2-2x-3=0,
∴x1=-1,x2=3.
∴A(-1,0),B(3,0),C(0,-3).
又y=(x-1)2-4,
∴顶点M(1,-4),
容易求得直线CM的表达式是y=-x-3.
在y=-x-3中,令y=0,得x=-3.
∴N(-3,0),
∴AN=2,
在y=x2-2x-3中,令y=-3,得x1=0,x2=2.
∴CP=2,
∴AN=CP.
∵AN∥CP,
∴四边形ANCP为平行四边形,此时P(2,-3);
(3)
△AEF是等腰直角三角形.
理由:在y=-x+3中,令x=0,得y=3,令y=0,得x=3.
∴直线y=-x+3与坐标轴的交点是D(0,3),B(3,0).
∴OD=OB,
∴∠OBD=45°,
又∵点C(0,-3),
∴OB=OC.
∴∠OBC=45度,
由图知∠AEF=∠ABF=45°,∠AFE=∠ABE=45°,
∴∠EAF=90°,且AE=AF.
∴△AEF是等腰直角三角形;
(4)当点E是直线y=-x+3上任意一点时,(3)中的结论:△AEF是等腰直角三角形成立.
|
解得
|
∴抛物线对应的函数表达式为y=x2-2x-3;
(2)存在.连接AP,CP,
如下图所示:

在y=x2-2x-3中,令x=0,得y=-3.
令y=0,得x2-2x-3=0,
∴x1=-1,x2=3.
∴A(-1,0),B(3,0),C(0,-3).
又y=(x-1)2-4,
∴顶点M(1,-4),
容易求得直线CM的表达式是y=-x-3.
在y=-x-3中,令y=0,得x=-3.
∴N(-3,0),
∴AN=2,
在y=x2-2x-3中,令y=-3,得x1=0,x2=2.
∴CP=2,
∴AN=CP.
∵AN∥CP,
∴四边形ANCP为平行四边形,此时P(2,-3);
(3)

△AEF是等腰直角三角形.
理由:在y=-x+3中,令x=0,得y=3,令y=0,得x=3.
∴直线y=-x+3与坐标轴的交点是D(0,3),B(3,0).
∴OD=OB,
∴∠OBD=45°,
又∵点C(0,-3),
∴OB=OC.
∴∠OBC=45度,
由图知∠AEF=∠ABF=45°,∠AFE=∠ABE=45°,
∴∠EAF=90°,且AE=AF.
∴△AEF是等腰直角三角形;
(4)当点E是直线y=-x+3上任意一点时,(3)中的结论:△AEF是等腰直角三角形成立.
看了 如图,抛物线y=ax2+bx...的网友还看了以下:
.用细绳AC和BC吊起一重物,两绳于竖直方向的夹角AC为30°,BC为60°.AC绳能承受的最大拉 2020-05-17 …
抛物线y=x2+bx+c(b≤0)的图像与x轴交于A,B两点,与y轴交于点C,其中点A的坐标为(- 2020-06-03 …
如图,已知直线y=x+2与两坐标轴分别交于A、B两点,抛物线y=x2+bx+c经过点A、B,P为直 2020-06-14 …
如图,以A为顶点的抛物线l2是由抛物线l1:y=x2沿x轴向右平移2个单位后得到的,两抛物线相交于 2020-06-22 …
已知抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0, 2020-07-20 …
对于抛物线y=x2与y=-x2,下列命题中错误的是()A.两条抛物线关于x轴对称B.两条抛物线关于 2020-07-26 …
(1/2)过抛物线x^2=2py(p大于0)的焦点作斜率为1的直线与该抛物线交于A,B两点,A,B 2020-07-30 …
已知抛物线C:y=ax^2,p(1,-1)在抛物线C上,过点P作斜率为K1,K2的两条直线,分别交 2020-07-31 …
已知抛物线y2=2px(p>0),过点(2,0)作直线与抛物线交于两点,若两点纵坐标之积为-8.( 2020-08-01 …
(2008•崇文区一模)已知抛物线C:y=ax2,点P(1,-1)在抛物线C上,过点P作斜率为k1、 2020-11-01 …