早教吧作业答案频道 -->数学-->
(2008•崇文区一模)已知抛物线C:y=ax2,点P(1,-1)在抛物线C上,过点P作斜率为k1、k2的两条直线,分别交抛物线C于异于点P的两点A(x1,y1),B(x2,y2),且满足k1+k2=0.(I)求抛物线C
题目详情
(2008•崇文区一模)已知抛物线C:y=ax2,点P(1,-1)在抛物线C上,过点P作斜率为k1、k2的两条直线,分别交抛物线C于异于点P的两点A(x1,y1),B(x2,y2),且满足k1+k2=0.
(I)求抛物线C的焦点坐标;
(II)若点M满足
=
,求点M的轨迹方程.
(I)求抛物线C的焦点坐标;
(II)若点M满足
BM |
MA |
▼优质解答
答案和解析
(I)将P(1,-1)代入抛物线C的方程y=ax2得a=-1,
∴抛物线C的方程为y=-x2,即x2=-y.
焦点坐标为F(0,-
).
(II)设直线PA的方程为y+1=k1(x-1),
联立方程
消去y得x2+k1x-k1-1=0,
则1•x1=-k1-1,即x1=-k1-1.
由△=k12-4(-k1-1)=(k1+2)2>0,得k1≠-2.
同理直线PB的方程为y+1=k2(x-1),
联立方程
消去y得x2+k2x-k2-1=0,
则1•x2=-k2-1,即x2=-k2-1.且k2≠-2.
又∵k1+k2=0,∴k1≠2.
设点M的坐标为(x,y),由
=
,则x=
.x=
=
.
又∵k1+k2=0,∴x=-1.
∴抛物线C的方程为y=-x2,即x2=-y.
焦点坐标为F(0,-
1 |
4 |
(II)设直线PA的方程为y+1=k1(x-1),
联立方程
|
则1•x1=-k1-1,即x1=-k1-1.
由△=k12-4(-k1-1)=(k1+2)2>0,得k1≠-2.
同理直线PB的方程为y+1=k2(x-1),
联立方程
|
则1•x2=-k2-1,即x2=-k2-1.且k2≠-2.
又∵k1+k2=0,∴k1≠2.
设点M的坐标为(x,y),由
BM |
MA |
x1+x2 |
2 |
−k1−1−k2−1 |
2 |
−2−(k1+k2) |
2 |
又∵k1+k2=0,∴x=-1.
作业帮用户
2017-09-29
举报

看了(2008•崇文区一模)已知抛...的网友还看了以下:
已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的 2020-04-05 …
已知抛物线的方程为y^2=2px(p>0)F为它的焦点.直线2x-y=0截抛物线所得弦长为根号5, 2020-04-27 …
已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的 2020-05-15 …
已知抛物线y=ax2+bx+c经过A(1,0),B(3,0)C(0,3)三点.27.已知抛物线y= 2020-05-19 …
已知抛物线经过A(-2,0)B(1,0)C(0,2)三点……已知抛物线经过A(-2,0)B(1,0 2020-06-06 …
在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线 2020-07-18 …
已知抛物线C经过(-5,0)(0,5/2)(1,6)三点,直线L的解析式是Y=2X-3.求抛物线C 2020-07-26 …
已知抛物线y=-x的平方+bx+c经过点A(3,0),B(-1,0)(1)求抛物线的解析式;(已知 2020-08-01 …
抛物线y=ax2+bx+c交x轴于A、B两点,交y于点C,已知抛物线的对称轴为x=1B(3,0),C 2020-11-27 …
已知抛物线y=x方+bx+3a,过点A(1,0)B(0,-3)与x轴交于另一点c.已知抛物线y=x方 2020-11-27 …