早教吧作业答案频道 -->其他-->
如图,在平面直角坐标系内,点0为坐标原点,经过点A(2,6)的直线交x轴负半轴于点B,交y轴于点C,OB=OC,直线AD交x轴正半轴于点D,若△ABD的面积为27.(1)求直线AD的解析式;(2)横坐
题目详情
如图,在平面直角坐标系内,点0为坐标原点,经过点A(2,6)的直线交x轴负半轴于点B,交y轴于点C,OB=OC,直线AD交x轴正半轴于点D,若△ABD的面积为27.(1)求直线AD的解析式;
(2)横坐标为m的点P在AB上(不与点A,B重合),过点P作x轴的平行线交AD于点E,设PE的长为y,求y与m之间的函数关系式并直接写出相应的m的取值范围;
(3)在(2)的条件下,在x轴上是否存在点F,使△PEF为等腰直角三角形?若存在求出点F的坐标,若不存在,请说明理由.
▼优质解答
答案和解析
(1)过点A作AG⊥x轴于点G,
∵A(2,6),
∴OG=2,AG=6.
∵OB=OC,
∴∠OBC=∠OCB.
∵∠COB=90°,∠COB+∠OBC+∠OCB=180°,

∴∠OBC=∠OCB=45°.
∵∠COB=∠AGB=90°,
∴CO∥AG.
∴∠BAG=∠OCB=∠OBC═45°
∴BG=AG=6,
∴OB=4,
∴B(-4,0)
∵S△ABD=
BD•AG=27,
∴BD=9
∴OD=5,
∴D(5,0)
设直线AD的解析式为y=kx+b
∵A(2,6)D(5,0),
∴
,
解得:
,
∴直线AD的解析式为y=-2x+10;
(2)过点P作PH⊥BD,点H为垂足
∠BPH=180°-∠ABO-∠PHB=45°

∴∠BPH=∠PBH,
∴PH=HB.
设AB的解析式为:y=kx+b,由题意,得
,
解得:
∵A(2,6),
∴OG=2,AG=6.
∵OB=OC,
∴∠OBC=∠OCB.
∵∠COB=90°,∠COB+∠OBC+∠OCB=180°,

∴∠OBC=∠OCB=45°.
∵∠COB=∠AGB=90°,
∴CO∥AG.
∴∠BAG=∠OCB=∠OBC═45°
∴BG=AG=6,
∴OB=4,
∴B(-4,0)
∵S△ABD=
| 1 |
| 2 |
∴BD=9
∴OD=5,
∴D(5,0)
设直线AD的解析式为y=kx+b
∵A(2,6)D(5,0),
∴
|
解得:
|
∴直线AD的解析式为y=-2x+10;
(2)过点P作PH⊥BD,点H为垂足
∠BPH=180°-∠ABO-∠PHB=45°

∴∠BPH=∠PBH,
∴PH=HB.
设AB的解析式为:y=kx+b,由题意,得
|
解得:
作业帮用户
2017-10-03
![]() |
看了 如图,在平面直角坐标系内,点...的网友还看了以下:
KateisnotgoodatEnglishi.,shewonthefirst.A.AndB.Bu 2020-05-13 …
已知,平面直角坐标系中,A点坐标为(8,0),B点坐标为(0,6),C点坐标为(m,0)(0<m< 2020-06-12 …
在△ABC中,∠BAC=90°,AB=AC.(1)如图1,若A、B两点的坐标分别是A(0,4),B 2020-06-12 …
如图,在平面直角坐标系中,点A的坐标是(4,3),动圆D经过A、O,分别与两坐标轴的正半轴交于点E 2020-06-13 …
1为鼓励节约用水,某市对居民用户用水的收费标准作如下规定:每户每月用水如果不超过标准用水量10吨, 2020-06-27 …
如图,在平面直角坐标系中,点A在x轴负半轴上,点B的坐标是(0,2),过点B作BC⊥AB交x轴于点 2020-07-20 …
如图,在平面直角坐标系xOy中,点A,B在双曲线y=kx(k是常数,且k≠0)上,过点A作AD⊥x 2020-08-03 …
在平面直角坐标系中,已知A(2,2),AB⊥y轴于B,AC⊥x轴于C.(1)如图1,E为线段OB上 2020-08-03 …
如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y=2x于点D,过D作两坐标轴的垂线DC 2020-11-01 …
(2010•抚顺)如图所示,平面直角坐标系中,抛物线y=ax2+bx+c经过A(0,4)、B(-2, 2020-12-25 …
扫描下载二维码