早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设函数f(x)=a(x+1)2ln(x+1)+bx(a,b∈R),曲线y=f(x)过点(e-1,e2-e+1)(e是自然对数的底数),且在点(0,0)处的切线方程为y=0.(1)求a,b的值;(2)证明:当x≥0时,f(x)≥x2

题目详情
设函数f(x)=a(x+1)2ln(x+1)+bx(a,b∈R),曲线y=f(x)过点(e-1,e2-e+1)(e是自然对数的底数),且在点(0,0)处的切线方程为y=0.
(1)求a,b的值;
(2)证明:当x≥0时,f(x)≥x2
▼优质解答
答案和解析
(1) f'(x)=2a(x+1)ln(x+1)+a(x+1)+b,
因为f'(0)=a+b=0,f(e-1)=ae2+b(e-1)=a(e2-e+1)=e2-e+1,
所以a=1,b=-1.
(2)证明:f(x)=(x+1)2ln(x+1)-x,
设g(x)=(x+1)2ln(x+1)-x-x2(x≥0),
则m(x)=g'(x)=2(x+1)ln(x+1)-x,
m'(x)=2ln(x+1)+1>0,
所以m(x)在[0,+∞)上单调递增,
所以m(x)≥m(0)=0,
所以g(x)在[0,+∞)上单调递增,
所以g(x)≥g(0)=0.
所以f(x)≥x2