早教吧作业答案频道 -->数学-->
已知函数f(x)=(x2-2x)lnx+ax2+2(a∈R)在点(1,f(1))处的切线与直线x-3y-1=0垂直.(1)求实数a的值;(2)若g(x)=f(x)+2x2-x-2,且当x∈(1e2,e](e为自然对数的底数)时,g(x)≤2m-
题目详情
已知函数f(x)=(x2-2x)lnx+ax2+2(a∈R)在点(1,f(1))处的切线与直线x-3y-1=0垂直.
(1)求实数a的值;
(2)若g(x)=f(x)+2x2-x-2,且当x∈(
,e](e为自然对数的底数)时,g(x)≤2m-3e恒成立,求实数m的取值范围.
(1)求实数a的值;
(2)若g(x)=f(x)+2x2-x-2,且当x∈(
1 |
e2 |
▼优质解答
答案和解析
(1)函数f(x)=(x2-2x)lnx+ax2+2的导数为
f′(x)=(2x-2)lnx+x-2+2ax,
可得在点(1,f(1))处的切线斜率为2a-1,
由切线与直线x-3y-1=0垂直,可得2a-1=-3,
解得a=-1;
(2)g(x)=f(x)+2x2-x-2=(x2-2x)lnx-x2+2+2x2-x-2
=(x2-2x)lnx+x2-x,
可得g′(x)=(2x-2)lnx+3x-3=(x-1)(2lnx+3),
当x∈(e-2,e -
)时,g′(x)>0,g(x)递增;
x∈(1,e)时,g′(x)>0,g(x)递增;
当x∈(e -
,1)时,g′(x)<0,g(x)递减.
由g(e)=2e2-3e>g(e -
)=2e -
-
e-3,可得
2e2-3e≤2m-3e,解得m≥e2.
即有m的范围是[e2,+∞).
f′(x)=(2x-2)lnx+x-2+2ax,
可得在点(1,f(1))处的切线斜率为2a-1,
由切线与直线x-3y-1=0垂直,可得2a-1=-3,
解得a=-1;
(2)g(x)=f(x)+2x2-x-2=(x2-2x)lnx-x2+2+2x2-x-2
=(x2-2x)lnx+x2-x,
可得g′(x)=(2x-2)lnx+3x-3=(x-1)(2lnx+3),
当x∈(e-2,e -
3 |
2 |
x∈(1,e)时,g′(x)>0,g(x)递增;
当x∈(e -
3 |
2 |
由g(e)=2e2-3e>g(e -
3 |
2 |
3 |
2 |
1 |
2 |
2e2-3e≤2m-3e,解得m≥e2.
即有m的范围是[e2,+∞).
看了 已知函数f(x)=(x2-2...的网友还看了以下:
(2012山东数学)((22)已知函数f(x)=(lnx+k)/e^x(k为常数,e=2.7(201 2020-03-30 …
已知f(x)是定义在[-e,e]上的奇函数,当x€(0.e](€是属于符号)时,f(x)=e^x+ 2020-05-13 …
1.函数f(x)=e^|x-a|在x=a处()A.连续但不可导B.导函数连续2.函数f(x)..当 2020-05-14 …
点x=1是函数y={[e^(1/x-1)-1}/{[e^(1/x-1)+1]}的跳跃间断点,当x从 2020-05-16 …
(ln(1+x)÷x)的1÷(e^x-1)次方的极限,x趋于0 2020-05-16 …
关于e^cosx的马克老林展开,要求展到X^4项,教材上这样做:e^cosx=e*e^(cosx- 2020-05-17 …
limx->0(e^x+e^2+e^3)/3lim(x~0)((e^x+e^2x+e^3x)/3) 2020-05-17 …
已知函数f(x)=(x∧2-3x+9/4)e∧x其中e为自然数的底数.(1)函数f(x)的图像在x 2020-06-03 …
讨论fx=1/(1+e^1/x)x≠0在点x=0处的左右连续性讨论f(x)=1/(1+e^1/x) 2020-06-10 …
设总体的二阶矩存在,x1,x2,.xn为其样本,求xi-(x的拔)与xj-(x的拔)(i≠j)的相 2020-06-12 …