早教吧作业答案频道 -->数学-->
矩阵的一个小问题什么叫对角矩阵?除主对角线上其余位置的元素都为0的矩阵?那主对角线是能否为0?比如说一个n阶矩阵a11=1其余位置都为0的矩阵是否是主对角矩阵?什么叫一个矩阵可对角化?
题目详情
矩阵的一个小问题
什么叫对角矩阵?除主对角线上其余位置的元素都为0的矩阵?那主对角线是能否为0?比如说一个n阶矩阵a11=1 其余位置都为0的矩阵是否是主对角矩阵?
什么叫一个矩阵可对角化?
哈密顿-凯莱定理的证明 A是数域P上的nn矩阵,f(s)=/sE-A/是A的特征多项式,则f(A)=0
我看书上证明怎么写这么多啊?不是直接把s=A代出来f(A)=/AE-A/=/A-A/=0吗?
问题二补充:是不是所有矩阵都可以对角化?
问题三补充:问题三如果我说错了,请说明我错在哪?如果我说对了那哈密顿-凯莱定理不一眼就可以看出来了那还需要证明干嘛?况且书上对哈密顿-凯莱定理的证明上上去还很复杂。这是怎么回事?
什么叫对角矩阵?除主对角线上其余位置的元素都为0的矩阵?那主对角线是能否为0?比如说一个n阶矩阵a11=1 其余位置都为0的矩阵是否是主对角矩阵?
什么叫一个矩阵可对角化?
哈密顿-凯莱定理的证明 A是数域P上的nn矩阵,f(s)=/sE-A/是A的特征多项式,则f(A)=0
我看书上证明怎么写这么多啊?不是直接把s=A代出来f(A)=/AE-A/=/A-A/=0吗?
问题二补充:是不是所有矩阵都可以对角化?
问题三补充:问题三如果我说错了,请说明我错在哪?如果我说对了那哈密顿-凯莱定理不一眼就可以看出来了那还需要证明干嘛?况且书上对哈密顿-凯莱定理的证明上上去还很复杂。这是怎么回事?
▼优质解答
答案和解析
对角矩阵就是除主对角线外,其它位置都为零的矩阵.或者等价的定义为满足A'=A的矩阵
对角矩阵只要求对角线以外的位置都为零,对角线上是否出现零没有关系,全零矩阵也是对角矩阵.一个n阶矩阵a11=1 其余位置都为0的矩阵也是对角矩阵.
矩阵可对角化分为两种,一种是相似对角化,也就是存在可逆矩阵X,使得X^(-1)AX为对角矩阵.另一种是合同对角化.也就是存在可逆矩阵C,使得C'AC为对角矩阵.
我们一般所说的对角化指相似对角化
不是所有的矩阵都可以相似对角化,但任何矩阵都可以相似化为若尔当标准型.
所有的矩阵都可以合同对角化.
在刚学习哈密顿-凯莱定理时,很多学生认为是想当然成立的,其实不然,这里关键的原因在于A是一个矩阵,不是一个数,所以是不能直接代入的,矩阵和数有很多不同,运算和性质都不同.不能想当然的认为对数成立的式子对矩阵也成立.要另行对矩阵的情况重新进行严格的证明.
对角矩阵只要求对角线以外的位置都为零,对角线上是否出现零没有关系,全零矩阵也是对角矩阵.一个n阶矩阵a11=1 其余位置都为0的矩阵也是对角矩阵.
矩阵可对角化分为两种,一种是相似对角化,也就是存在可逆矩阵X,使得X^(-1)AX为对角矩阵.另一种是合同对角化.也就是存在可逆矩阵C,使得C'AC为对角矩阵.
我们一般所说的对角化指相似对角化
不是所有的矩阵都可以相似对角化,但任何矩阵都可以相似化为若尔当标准型.
所有的矩阵都可以合同对角化.
在刚学习哈密顿-凯莱定理时,很多学生认为是想当然成立的,其实不然,这里关键的原因在于A是一个矩阵,不是一个数,所以是不能直接代入的,矩阵和数有很多不同,运算和性质都不同.不能想当然的认为对数成立的式子对矩阵也成立.要另行对矩阵的情况重新进行严格的证明.
看了 矩阵的一个小问题什么叫对角矩...的网友还看了以下:
矩形OABC的顶点A(0,3),C(-1 ,0).将矩形OABC绕原点顺时针旋转90°,得到矩形 2020-05-14 …
稀疏矩阵是大量元素为0的矩阵。采用三元组法存储时,若有n 行三元组,则该稀疏矩阵有_____ 2020-05-23 …
稀疏矩阵是大量元素为0的矩阵。采用三元组法存储时,若有n个三元组,则该稀疏矩阵有 ______个非零 2020-05-23 …
稀疏矩阵是大量元素为0的矩阵。采用三元组法存储时,若有n行三元组,则该稀疏矩阵有__________ 2020-05-24 …
单元素矩阵的乘法问题大一刚学线代,老师说如果矩阵只有一个元可以按照一个数来处理.我想问假如一个1× 2020-06-10 …
设A为3阶矩阵且行列式|A|=0,则下列说法正确的是A、矩阵A中必有一列元素等于0B、矩阵A中必有 2020-07-25 …
矩阵的一个小问题什么叫对角矩阵?除主对角线上其余位置的元素都为0的矩阵?那主对角线是能否为0?比如 2020-08-02 …
关于x1,x2,x3的齐次线性方程组λx1+x2+λ2x3=0x1+λx2+x3=0x1+x2+λ 2020-08-02 …
病例组总数248对照组总数284某暴露因素的比值比为0.9695%可信区间为0.69~1.32反推一 2020-11-03 …
一个分析因素重要程度的矩阵里面填写0、1、2、3、4的这个矩阵还是分析法叫什么名字?就是两两因素对比 2020-11-11 …