早教吧作业答案频道 -->数学-->
关于定积分问题由两条抛物线y^2=x和y=x^2在第一象限围成一个曲线图形,假如在这个曲线图形中作一个半径最大的内切圆,是否可以求出该圆的面积和圆的方程?
题目详情
关于定积分问题
由两条抛物线y^2=x和y=x^2在第一象限围成一个曲线图形,假如在这个曲线图形中作一个半径最大的内切圆,是否可以求出该圆的面积和圆的方程?
由两条抛物线y^2=x和y=x^2在第一象限围成一个曲线图形,假如在这个曲线图形中作一个半径最大的内切圆,是否可以求出该圆的面积和圆的方程?
▼优质解答
答案和解析
两条曲线相交于 A(1,1)点,易见,内切圆的圆心必在y=x这条直线上,
y=x^2的切线方程是 y'=2x,法线方程是,
y法=-1/(2x),过曲线y=x^2上任意一点(x0,y0)的法线方程是 ,y-y0=(x-x0)*(-1/(2x0)),其与y=x的交点是,x=y=(x0+2x0*y0)/(1+2x0)= (x0+2x0^3)/(1+2x0),此点与(x0,y0)之间的距离就是半径r,
r=Sqrt[(x0-(x0+2x0^3)/(1+2x0))^2+(x0^2-(x0+2x0^3)/(1+2x0))^2],r对x0求导并令其等于0,解得x0=1/2,r=1/(4根2)=0.17677669530
y=x^2的切线方程是 y'=2x,法线方程是,
y法=-1/(2x),过曲线y=x^2上任意一点(x0,y0)的法线方程是 ,y-y0=(x-x0)*(-1/(2x0)),其与y=x的交点是,x=y=(x0+2x0*y0)/(1+2x0)= (x0+2x0^3)/(1+2x0),此点与(x0,y0)之间的距离就是半径r,
r=Sqrt[(x0-(x0+2x0^3)/(1+2x0))^2+(x0^2-(x0+2x0^3)/(1+2x0))^2],r对x0求导并令其等于0,解得x0=1/2,r=1/(4根2)=0.17677669530
看了 关于定积分问题由两条抛物线y...的网友还看了以下:
若一次函数y=(k-1)x+(m+3)的图象经过原点,则下列关系中正确的是Ak=1Bm=-3Ck≠ 2020-04-08 …
一次函数的图象Y=KX+B在坐标轴中当K、B分别为正负数时函数直线经过的象限分别是哪些k>0,b0 2020-05-17 …
如图所示,在坐标系xoy平面的第Ⅰ象限内存在垂直纸面向外的匀强磁场B1,在第Ⅳ象限内存在垂直纸面向 2020-05-17 …
若二次函数y=f(x)的图象过原点,且它的导数y=f′(x)的图象是经过第一、二、三象限的一条直线 2020-05-20 …
投入产出表的第Ⅰ象限从横向看,表明( )。A.某个产业部门的产品提供给各个产业部门作为生产消耗使 2020-05-21 …
点P(sin160°,cos160°)位于直角坐标系的第象限 2020-06-02 …
如图所示,在xOy坐标系的第Ⅱ象限内,x轴和平行x轴的虚线之间(包括x轴和虚线)有磁感应强度大小为 2020-06-14 …
为了得到函数y=cosx5,x∈R的图象,只需把余弦函数的图象y=cosx,x∈R上所有的点的() 2020-06-14 …
如图所示,在xOy平面内的第Ⅲ象限中有沿-y方向的匀强电场,场强大小为E.在第I和第II象限有磁感 2020-06-15 …
如图所示,直角坐标系中的第Ⅰ象限中存在沿y轴负方向的匀强电场,在第Ⅱ象限中存在垂直纸面向外的匀强磁 2020-07-10 …