早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知△ABC是边长为3,4,5的直角三角形,点P是此三角形内切圆上一动点,分别以PA、PB、PC为直径作圆,则这三个圆的面积之和的最大值与最小值的和为()A.12πB.10πC.8πD.6π

题目详情
已知△ABC是边长为3,4,5的直角三角形,点P是此三角形内切圆上一动点,分别以PA、PB、PC为直径作圆,则这三个圆的面积之和的最大值与最小值的和为(  )
A. 12π
B. 10π
C. 8π
D. 6π
▼优质解答
答案和解析
建立坐标系 设A(3,0),B(0,4),C(0,0),P(x,y),△ABC内切圆半径为r.
∵三角形ABC面积 S=
1
2
AB×AC=
1
2
(AB+AC+BC)r=12,解得 r=1
即内切圆圆心坐标为 (1,1)
∵P在内切圆上
∴(x-1)2+(y-1)2=1
∵P点到A,B,C距离的平方和为 d=x2+y2+(x-3)2+y2+x2+(y-4)2=3(x-1)2+3(y-1)2-2y+19=22-2y
显然 0≤y≤2 即 18≤d≤22,
2
πd
4
11π
2
即以PA,PB,PC为直径的三个圆面积之和最大值为
11π
2
最小值为
2

故选B.