早教吧作业答案频道 -->数学-->
如图,在五边形ABCDE中,∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找一点M、N,使得△AMN周长最小时,∠AMN+∠ANM的度数为.
题目详情
如图,在五边形ABCDE中,∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找一点M、N,使得△AMN周长最小时,∠AMN+∠ANM的度数为___.


▼优质解答
答案和解析
如图,取点A关于BC的对称点P,关于DE的对称点Q,连接PQ与BC相交于点M,与DE相交于点N,
则AM=PM,AN=QN,
所以,∠P=∠PAM,∠Q=∠QAN,
所以,△AMN周长=AM+MN+AN=PM+MN+QN=PQ,
由轴对称确定最短路线,PQ的长度即为△AMN的周长最小值,
∵∠BAE=125°,
∴∠P+∠Q=180°-125°=55°,
∵∠AMN=∠P+∠PAM=2∠P,∠ANM=∠Q+∠QAN=2∠Q,
∴∠AMN+∠ANM=2(∠P+∠Q)=2×55°=110°.
故答案为:110°.
如图,取点A关于BC的对称点P,关于DE的对称点Q,连接PQ与BC相交于点M,与DE相交于点N,则AM=PM,AN=QN,
所以,∠P=∠PAM,∠Q=∠QAN,
所以,△AMN周长=AM+MN+AN=PM+MN+QN=PQ,
由轴对称确定最短路线,PQ的长度即为△AMN的周长最小值,
∵∠BAE=125°,
∴∠P+∠Q=180°-125°=55°,
∵∠AMN=∠P+∠PAM=2∠P,∠ANM=∠Q+∠QAN=2∠Q,
∴∠AMN+∠ANM=2(∠P+∠Q)=2×55°=110°.
故答案为:110°.
看了 如图,在五边形ABCDE中,...的网友还看了以下:
{a(n)}中a(1)=3;na(n=+1)-(n+1)a(n)=2n(n+1);证明{a(n)/n 2020-03-30 …
求一数列.高2.a(n+1)=2an/2an+1已知a1=1a(n+1)=2an/2an+1求数列 2020-04-25 …
已知数列a(n)为等比数列,a(4)=16,q=2,数列b(n)前N项和s(n)=1/2*n的平方 2020-05-13 …
关于极限的题目a(n)=n*sin(∏/n)(n>=1)当n→∞时,求a(n)(n)为下标a(n) 2020-05-14 …
A(n,n)=n(n-1)(n-2)……·3·2·1怎么理解麻烦写下过程c(2,3)c(1,4)= 2020-05-14 …
大立方体边上一共有几个小立方体一个n*n*n(N的三立方/边长是n的立方体),切割成边长为1的小立 2020-07-16 …
基本不等式设数列a(n),b(n),且a(1)>b(1)>0,a(n)=(a(n-1)+b(n-1 2020-08-03 …
设数列{an}满足a(n+1)=2an+n^2-4n+1.(1)若a1=3,求证:存在f(n)=an 2020-11-19 …
下列推断中,符合实际的是()A.第n周期的最后一种金属元素位于第n主族(n>1)B.第n周期有(8- 2020-12-07 …
在资金时间价值计算时,i和n给定,下列等式中正确的有().A.(F/A,i,n)=[(P/F,i,n 2021-01-14 …