早教吧作业答案频道 -->数学-->
如图,对称轴为x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).(1)求点B的坐标.(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC
题目详情
如图,对称轴为x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).

(1)求点B的坐标.
(2)已知a=1,C为抛物线与y轴的交点.
①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标.
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.

(1)求点B的坐标.
(2)已知a=1,C为抛物线与y轴的交点.
①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标.
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
▼优质解答
答案和解析
(1)∵对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,
∴A、B两点关于直线x=-1对称,
∵点A的坐标为(-3,0),
∴点B的坐标为(1,0);
(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=-1,
∴
=-1,解得b=2.
将B(1,0)代入y=x2+2x+c,
得1+2+c=0,解得c=-3.
则二次函数的解析式为y=x2+2x-3,
∴抛物线与y轴的交点C的坐标为(0,-3),OC=3.
设P点坐标为(x,x2+2x-3),
∵S△POC=4S△BOC,
∴
×3×|x|=4×
×3×1,
∴|x|=4,x=±4.
当x=4时,x2+2x-3=16+8-3=21;
当x=-4时,x2+2x-3=16-8-3=5.
∴点P的坐标为(4,21)或(-4,5);
②设直线AC的解析式为y=kx+t,将A(-3,0),C(0,-3)代入,
得
,解得
,
即直线AC的解析式为y=-x-3.
设Q点坐标为(x,-x-3)(-3≤x≤0),则D点坐标为(x,x2+2x-3),
QD=(-x-3)-(x2+2x-3)=-x2-3x=-(x+
)2+
,
∴当x=-
时,QD有最大值
.
∴A、B两点关于直线x=-1对称,
∵点A的坐标为(-3,0),
∴点B的坐标为(1,0);
(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=-1,
∴
-b |
2 |
将B(1,0)代入y=x2+2x+c,
得1+2+c=0,解得c=-3.
则二次函数的解析式为y=x2+2x-3,
∴抛物线与y轴的交点C的坐标为(0,-3),OC=3.
设P点坐标为(x,x2+2x-3),
∵S△POC=4S△BOC,
∴
1 |
2 |
1 |
2 |
∴|x|=4,x=±4.

当x=-4时,x2+2x-3=16-8-3=5.
∴点P的坐标为(4,21)或(-4,5);
②设直线AC的解析式为y=kx+t,将A(-3,0),C(0,-3)代入,
得
|
|
即直线AC的解析式为y=-x-3.
设Q点坐标为(x,-x-3)(-3≤x≤0),则D点坐标为(x,x2+2x-3),
QD=(-x-3)-(x2+2x-3)=-x2-3x=-(x+
3 |
2 |
9 |
4 |
∴当x=-
3 |
2 |
9 |
4 |
看了 如图,对称轴为x=-1的抛物...的网友还看了以下:
如图,抛物线y=ax2+bx+c(a<0)与x轴相交于A、B两点,与y轴的正半轴相交于点C,对称轴 2020-05-15 …
一道初三数学的几何证明题,圆的PA、PB分别为相交两圆⊙O1和⊙O2的切线,且PA=PB.PD、P 2020-05-16 …
抛物线为二次函数y=x2-2x-3的图像,它与x轴相交于A、B两点(点A在点B的左侧),与y轴相交 2020-05-16 …
同一平面内,重合是否可以理解为相交,它怎样定义? 2020-05-24 …
旧版的万事达卡标识为相交的红、黄两个圆,中间印有白色MasterCard英文字母。() 2020-06-07 …
再什么条件下,相贯线是平面曲线?曲线的正面投影为相交两直线? 2020-06-07 …
用于联接两相交轴的单万向联轴器,其主要缺点是 ()A.结构庞大,维护困难B.零件易损坏,使用寿命短C 2020-06-07 …
在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与 2020-06-29 …
为什么地球上经线不像纬线那样定义为互相平行的圆,而要定义为相交的大圆? 2020-07-29 …
过双曲线的一个焦点作渐近线的垂线,垂足为,交轴于点,若,则该双曲线的离心率为. 2020-08-01 …