早教吧作业答案频道 -->其他-->
已知二次函数f(x)=ax2+bx(a,b为常数,a≠0)的对称轴为直线x=-1,且方程f(x)+x=0有等根.(1)求f(x)的解析式;(2)是否存在实数m,n(m<n),使x∈[m,n]时,函数f(x)的最大值为3n
题目详情
已知二次函数f(x)=ax2+bx(a,b为常数,a≠0)的对称轴为直线x=-1,且方程f(x)+x=0有等根.
(1)求f(x)的解析式;
(2)是否存在实数m,n(m<n),使x∈[m,n]时,函数f(x)的最大值为3n、最小值为3m,如果存在,求出 m、n的值;如果不存在,说明理由.
(1)求f(x)的解析式;
(2)是否存在实数m,n(m<n),使x∈[m,n]时,函数f(x)的最大值为3n、最小值为3m,如果存在,求出 m、n的值;如果不存在,说明理由.
▼优质解答
答案和解析
(1)∵二次函数f(x)=ax2+bx(a,b为常数,a≠0)的对称轴为直线x=-1,且方程f(x)+x=0有等根.
∴
=1,由方程有两个相等实根,得△=(b+1)2-4a×0=0,
∴b=-1,a=-
故f(x)=-
x2-x;
(2)假设存在实数m、n满足条件,由(1)知,
f(x)=-
x2-x=-
(x+1)2+
≤
,则3n≤
,即n≤
,
∵f(x)=-
(x+1)2+
的对称轴为x=-1,
∴当n≤
时,
①当m<n≤-1时,f(x)为增函数
∴f(m)=3m,f(n)=3n
解得m1=0,m2=-8
n1=0,n2=-8,
∵m<n,∴m=-8,n=0;
②当m<-1<n时,
函数f(-1)=-
-1=−
=3n,解得n=−
,
所以最小值为f(
)=3m,或者f(m)=3m,
解得m=-
(舍去),或者m=-8,m=0(舍去);
③当-1≤m<n≤
,f(m)=3n,f(n)=3m,
解得m+n=4,与-1≤m<n≤
矛盾.
∴不存在-1≤m<n≤
,
综上所述
m=-8,n=0或者m=-8,n=−
.
∴
b |
2a |
∴b=-1,a=-
1 |
2 |
故f(x)=-
1 |
2 |
(2)假设存在实数m、n满足条件,由(1)知,
f(x)=-
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
6 |
∵f(x)=-
1 |
2 |
1 |
2 |
∴当n≤
1 |
6 |
①当m<n≤-1时,f(x)为增函数
∴f(m)=3m,f(n)=3n
解得m1=0,m2=-8
n1=0,n2=-8,
∵m<n,∴m=-8,n=0;
②当m<-1<n时,
函数f(-1)=-
1 |
2 |
3 |
2 |
1 |
2 |
所以最小值为f(
1 |
2 |
解得m=-
1 |
12 |
③当-1≤m<n≤
1 |
6 |
解得m+n=4,与-1≤m<n≤
1 |
6 |
∴不存在-1≤m<n≤
1 |
6 |
综上所述
m=-8,n=0或者m=-8,n=−
1 |
2 |
看了 已知二次函数f(x)=ax2...的网友还看了以下:
函数f(x)=alnx-ax-3,若函数y=f(x)的图像在点(2,f(2))处的切线的倾斜角为4 2020-04-05 …
函数f(x)=alnx-ax-3,若函数y=f(x)的图像在点(2,f(2))处的切线的倾斜角为4 2020-04-05 …
1:如图,用与竖直方向成30度角的力F将重为10N的物体推靠在光滑的竖直墙上,求当物体沿着墙匀速滑 2020-04-27 …
在平行四边形ABCD中,点E,F分别是线段AD,BC上的两动点,点E从点A向D运动在平行四边形AB 2020-05-13 …
,;定义在正整数集f(x)对任意m,n,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且 2020-05-13 …
已知函数f(x)满足:对任意实数m,n都有f(m+n)=f(m)+f(n)-1已知函数f(x)满足 2020-05-17 …
设函数f(x)满足:①对任意实数m,n都有f(m+n)+f(m-n)=2f(m)f(n);②对任意 2020-06-12 …
设fx是[-2,2]的偶函数,且在[0,2]上递减,若f(1-m)<f(m)的范围.如上设fx是[ 2020-07-12 …
f:M->N是连续的满射,已知M是紧空间.求证:1,A是N中的闭集当且仅当A在M中的原像是闭集.2 2020-07-24 …
(手0六六•韶关模拟)若f(c)=c手-c+a,f(-m)<0,则f(m+六)的值为()A.正数B. 2020-11-12 …