早教吧作业答案频道 -->其他-->
(Ⅰ)设n维向量组α1,α2,…,αs线性无关,β1,β2,…,βt线性无关,且s+t>n,证明:存在非零n维向量ξ,ξ既可由α1,α2,…,αs线性表示,又可由β1,β2,…,βt线性表示;(Ⅱ)已
题目详情
(Ⅰ)设n维向量组α1,α2,…,αs线性无关,β1,β2,…,βt线性无关,且s+t>n,证明:存在非零n维向量ξ,ξ既可由α1,α2,…,αs线性表示,又可由β1,β2,…,βt线性表示;
(Ⅱ)已知α1=(1,2)T,α2=(2,3)T,β1=(3,4)T,β2=(4,5)T,求既可由α1,α2线性表示,又可由β1,β2线性表示的所有非零向量ξ.
(Ⅱ)已知α1=(1,2)T,α2=(2,3)T,β1=(3,4)T,β2=(4,5)T,求既可由α1,α2线性表示,又可由β1,β2线性表示的所有非零向量ξ.
▼优质解答
答案和解析
(Ⅰ)证:因s+t>n,故n维向量组α1,α2,…αs,β1,β2,…βt必线性相关,即有不全
为零的数k1,k2,…,ks,l1,l2,…lt,使
k1α1+k2α2+…+ksαs+l1β1+l2β2+…+ltβt=0,
于是必有n维向量ξ,使
k1α1+k2α2+…+ktαt=ξ=-l1β1-l2β2-…-ltβt.
而且ξ≠0,否则,由α1,α2,…αt线性无关及β1,β2,…βt线性无关,可得k1=k2=
…=kt=0,l1=l2=…=lt=0与前设其不全为零矛盾.
(Ⅱ)因α1,α2线性无关,β1,β2线性无关,而s+t=4>n=2,由(Ⅰ)知,先求齐
次线性方程组(α1,α2,β1,β2)X=0的非零解即可.
(α1,α2,β1,β2)═→
,则非零解为
k1(1,-2,1,0)T+k2(2,-3,0,1)T=(k1+2k2,-2k1-3k2,k1,k2)T
(k1,k2为不全为零的任意常数)
于是所求非零向量为
ξ=(k1+2k2)α1+(-2k1-3k2)α2=-k1β1-k2β2=(-3k1-4k2,-4k2-5k2)T
(k1,k2为不全为零的任意常数)
为零的数k1,k2,…,ks,l1,l2,…lt,使
k1α1+k2α2+…+ksαs+l1β1+l2β2+…+ltβt=0,
于是必有n维向量ξ,使
k1α1+k2α2+…+ktαt=ξ=-l1β1-l2β2-…-ltβt.
而且ξ≠0,否则,由α1,α2,…αt线性无关及β1,β2,…βt线性无关,可得k1=k2=
…=kt=0,l1=l2=…=lt=0与前设其不全为零矛盾.
(Ⅱ)因α1,α2线性无关,β1,β2线性无关,而s+t=4>n=2,由(Ⅰ)知,先求齐
次线性方程组(α1,α2,β1,β2)X=0的非零解即可.
(α1,α2,β1,β2)═→
|
k1(1,-2,1,0)T+k2(2,-3,0,1)T=(k1+2k2,-2k1-3k2,k1,k2)T
(k1,k2为不全为零的任意常数)
于是所求非零向量为
ξ=(k1+2k2)α1+(-2k1-3k2)α2=-k1β1-k2β2=(-3k1-4k2,-4k2-5k2)T
(k1,k2为不全为零的任意常数)
看了 (Ⅰ)设n维向量组α1,α2...的网友还看了以下:
向量b能由向量组A线性表示,可否说向量组是线性相关的?设向量β可由向量组α1,α2,...,αr线 2020-04-27 …
设向量组I=α1,α2,…,αr,可由向量组Ⅱ=β1,β2,…,βs线性表出,下列命题正确的是() 2020-05-13 …
设向量组α1,α2,…αr线性无关,证明向量组β1=α1+αr,β2=α2+αr,…,βr=αr- 2020-05-16 …
线性代数的概念理论问题,急!一向量组1可以由向量组2线性表出,如果向量组1是齐次线性方程的系数项, 2020-05-16 …
设向量β可由向量组α1,α2,...αm-1am线性表示,但不能由向量组(1)α1,α2,...α 2020-06-14 …
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2 2020-07-18 …
设向量组α1,α2,...,αn中,前n-1个向量线性相关,后n-1个向量线性无关,试讨论:(1) 2020-07-26 …
设α1,α2,β1,β2均为3维向量,且α1,α2相性无关,β1,β2线性无关,存在非零向量γ,使 2020-08-01 …
求向量a1=(1,2,-1,1)a2=(2,0,3,0)a3=(0,-4,5,-2)a4=(3,-2 2020-10-31 …
设n维列向量组α1,…,αm(m<n)线性无关,则n维列向量组β1,…,βm线性无关的充分必要条件为 2020-12-26 …