早教吧作业答案频道 -->其他-->
讨论函数f(x)=lg(1+x)+lg(1-x)的奇偶性与单调性.
题目详情
讨论函数f(x)=lg(1+x)+lg(1-x)的奇偶性与单调性.
▼优质解答
答案和解析
由题意,得
,解得-1<x<1,
∴f(x)的定义域为(-1,1).
又∵f(-x)=lg(1-x)+lg(1+x)=f(x),
∴f(x)为偶函数.
f(x)=lg(1-x)+lg(1+x)=lg[(1-x)(1-x)]=lg(1-x2).
设x1,x2∈(-1,0)且x1<x2,
∴x2-x1>0,x1+x2<0,
∴(1-x12)-(1-x22)=(x2-x1)(x1+x2)<0,
即1-x12<1-x22,
∴lg(1-x12)<lg(1-x22),
即f(x1)<f(x2),
∴f(x)=lg(1+x)+lg(1-x)在(-1,0)内单调递增.
又∵f(x)是偶函数,
∴f(x)=lg(1+x)+lg(1-x)在(0,1)内单调递减.
|
∴f(x)的定义域为(-1,1).
又∵f(-x)=lg(1-x)+lg(1+x)=f(x),
∴f(x)为偶函数.
f(x)=lg(1-x)+lg(1+x)=lg[(1-x)(1-x)]=lg(1-x2).
设x1,x2∈(-1,0)且x1<x2,
∴x2-x1>0,x1+x2<0,
∴(1-x12)-(1-x22)=(x2-x1)(x1+x2)<0,
即1-x12<1-x22,
∴lg(1-x12)<lg(1-x22),
即f(x1)<f(x2),
∴f(x)=lg(1+x)+lg(1-x)在(-1,0)内单调递增.
又∵f(x)是偶函数,
∴f(x)=lg(1+x)+lg(1-x)在(0,1)内单调递减.
看了 讨论函数f(x)=lg(1+...的网友还看了以下:
下列判断正确的是:A函数f(x)=x^2-2x/x-2是奇函数A函数f(x)=x^2-2x/x-2 2020-04-06 …
函数y=f(x)的定义域为[-1,0)U(0,1],其图像上任一点P(x,y)满足x^2+y^2= 2020-04-27 …
1.已知关于x的方程(1/3)^x=7-a的根为正数,求a的取值范围.2.已知奇函数f(x),偶函 2020-05-13 …
若y=f(x)偶函数,是否可证f(0)=0,为什么偶函数也有可能过原点那不就可以证明了吗? 2020-06-04 …
奇函数x奇函数=?奇函数X偶函数=?偶函数x偶函数=?必采纳! 2020-06-06 …
复合函数奇偶性质的证明对于复合函数F(x)=f[g(x)](1)若g(x)为偶函数,则F(x)为偶 2020-06-08 …
f(x)偶函数,g(x)奇函数 求 f(x)g(x)奇偶性f(x)/g(x)奇偶性 2020-06-27 …
f(x)是偶函数,f(x-1)是奇函数,若f(0.5)=9,则等于f(8.5)=因为f(x)偶函数 2020-07-14 …
函数f(x),定义域是全体实数,若对任意的实数x1,x2,都有f(x1+x2)+f(x1-x2)=2 2020-11-17 …
奇偶函数x的正负问题奇函数:f(-x)=-f(x)偶函数:f(-x)=f(x)设f(x)=sinx则 2021-01-14 …