早教吧作业答案频道 -->数学-->
定义在R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(1)<f(lnx),则x的取值范围.
题目详情
定义在R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(1)<f(lnx),则x的取值范围______.
▼优质解答
答案和解析
①当lnx>0时,因为f(x)在区间[0,+∞)上是单调增函数
所以f(1)<f(lnx)等价于1<lnx,解之得x>e;
②当lnx<0时,-lnx>0,结合函数f(x)是定义在R上的偶函数,
可得f(1)<f(lnx)等价于f(1)<f(-lnx),
再由函数f(x)在区间[0,+∞)上是单调增函数,得到1<-lnx,即lnx<-1,
解之得0<x<
.
综上所述,得x的取值范围是x>e或0<x<
.
故答案为:(0,
)∪(e,+∞).
所以f(1)<f(lnx)等价于1<lnx,解之得x>e;
②当lnx<0时,-lnx>0,结合函数f(x)是定义在R上的偶函数,
可得f(1)<f(lnx)等价于f(1)<f(-lnx),
再由函数f(x)在区间[0,+∞)上是单调增函数,得到1<-lnx,即lnx<-1,
解之得0<x<
1 |
e |
综上所述,得x的取值范围是x>e或0<x<
1 |
e |
故答案为:(0,
1 |
e |
看了 定义在R上的偶函数f(x)在...的网友还看了以下:
已知f(X)=x2-x+c定义在区间〔0,1〕上,X1,X2属于〔0,1〕,且X1≠X2,求证:| 2020-04-25 …
数学题,函数奇偶性问题,单调性问题已知函数f(x)在(-1,1)上有定义,f(0.5)=-1,当且 2020-05-16 …
微积分--极限定义对任何ε>0,恒可找到一个δ>0,使得0<∣f(x)-a∣<δ时,必有∣f(x) 2020-06-10 …
设函数f(x)=x2+aln(x+1)(a为常数)(Ⅰ)若函数y=f(x)在区间[1,+∞)上是单 2020-07-14 …
证明方程x=asinx+b(a>0,b>0)至少有一个正根,并且不超过a+bf(x)在闭区间[0, 2020-07-20 …
已知函数fx=ax^2+bx+c(a>0,b∈R,c∈R)已知函数f(x)=ax^2+bx+c(a 2020-07-26 …
若偶函数f(x)在(-无穷大,-1)上是增函数,则下列关系式中成立的是()A.f(-2分之3)<f 2020-08-01 …
若偶函数f(x)在(,-∞-1]上是增函数,这下列关系中成立的是A.f(2)<f(-3/2)<f( 2020-08-01 …
①函数Y=X²-mx+2的单调区间为(-无穷,1)则m的取值范围是()②:若f(x+1)=x²-5 2020-08-02 …
设函数f(x)是定义在[-3,3]上的函数,对区间[-3,3]上任意x,y都有f(x+y)=f(x) 2020-10-31 …