早教吧作业答案频道 -->数学-->
又见高一函数(抽象函数)……题目请入内函数f(x)对任意m,n∈R,都有f(m+n)=f(m)+f(n)-1,并且当x>0时,恒有f(x)>1⑴求证:f(x)在R上是增函数⑵若f(3)=4,解不等式f(a²+a-5)<2
题目详情
又见高一函数(抽象函数)……题目请入内
函数f(x)对任意m,n∈R,都有f(m+n)=f(m)+f(n)-1,并且当x>0时,
恒有f(x)>1
⑴求证:f(x)在R上是增函数
⑵若f(3)=4,解不等式f(a²+a-5)<2
函数f(x)对任意m,n∈R,都有f(m+n)=f(m)+f(n)-1,并且当x>0时,
恒有f(x)>1
⑴求证:f(x)在R上是增函数
⑵若f(3)=4,解不等式f(a²+a-5)<2
▼优质解答
答案和解析
1,
令m=n=0,f(0)=1
f(m+n)=f(m)+f(n)-1,
f(m)=f(m-n+n)=f(m-n)+f(n)-1
所以f(m-n)-1=f(m)-f(n)
令n=-m,f(m+n)=f(0)=1=f(m)+f(-m),
所以f(m)=1-f(-m)
任取x1,x2,且x1>x2>0
f(x1)-f(x2)=f(x1-x2)-1,又当x>0时,恒有f(x)>1,所以f(x1)>f(x2)
所以函数在(0,+无穷)上是增函数
任取x3,x4,且x3
令m=n=0,f(0)=1
f(m+n)=f(m)+f(n)-1,
f(m)=f(m-n+n)=f(m-n)+f(n)-1
所以f(m-n)-1=f(m)-f(n)
令n=-m,f(m+n)=f(0)=1=f(m)+f(-m),
所以f(m)=1-f(-m)
任取x1,x2,且x1>x2>0
f(x1)-f(x2)=f(x1-x2)-1,又当x>0时,恒有f(x)>1,所以f(x1)>f(x2)
所以函数在(0,+无穷)上是增函数
任取x3,x4,且x3
看了 又见高一函数(抽象函数)……...的网友还看了以下:
如何证明抽象函数f(a-x)和抽象函数f(a+x)的对称轴是a轴如何证明抽象函数f(a-x)和抽象 2020-04-05 …
(2006•淮安)正比例函数与反比例函数图象都经过点(1,4),在第一象限内正比例函数图象在反比例 2020-04-27 …
数学题已知函数f(x)=lnx,g(x)=a/x(a>0),设F(x)=f(x)+g(x).已知函 2020-06-08 …
二次函数y=a(x-3)2+4的图象是由二次函数的图象经过平移得到的.(1)请指出a的值,并二次函 2020-07-21 …
函数f(x)与y=a^x的图象关于y=x对称,记g(x)=f(x)[f(x)+2f(2)-1].若 2020-08-01 …
在平面直角坐标系中,设二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经 2020-08-03 …
设函数f(x)=2x,函数g(x)的图象与函数f(x)的图象关于y轴对称.(1)若f(x)=4g(x 2020-11-11 …
给这几个命题的证明,1.若f(x+a)=f(b-x),对于x∈R恒成立,则y=f(x)的图象关于直线 2020-11-11 …
如果函数y=f(x)的图象关于x=a和x=b都对称,证明这个函数满足f[2(a-b)+x]=f(x) 2020-11-19 …
小敏学习了一次函数后,尝试着用相同的方法研究函数y=a|x-b|+c的图象和性质.(1)在给出的平面 2020-12-04 …