早教吧作业答案频道 -->数学-->
已知函数f(x)=(a-1)xa(a∈R),g(x)=|lgx|.(Ⅰ)若f(x)是幂函数,求a的值并求其单调递减区间;(Ⅱ)关于x的方程g(x-1)+f(1)=0在区间(1,3)上有两不同实根x1,x2(x1<x2),
题目详情
已知函数f(x)=(a-1)xa(a∈R),g(x)=|lgx|.
(Ⅰ)若f(x)是幂函数,求a的值并求其单调递减区间;
(Ⅱ)关于x的方程g(x-1)+f(1)=0在区间(1,3)上有两不同实根x1,x2(x1<x2),求a+
+
的取值范围.
(Ⅰ)若f(x)是幂函数,求a的值并求其单调递减区间;
(Ⅱ)关于x的方程g(x-1)+f(1)=0在区间(1,3)上有两不同实根x1,x2(x1<x2),求a+
1 |
x1 |
1 |
x2 |
▼优质解答
答案和解析
(Ⅰ)∵f(x)=(a-1)xa(a∈R),f(x)是幂函数,
∴由题有a-1=1,得a=2;-------------2’
∴f(x)=x2的单调递减区间为(-∞,0)-------------4’
(Ⅱ)方程g(x-1)+f(1)=0化为g(x-1)=1-a,
由题意函数y=g(x-1)与y=1-a在x∈(1,3)上有两不同交点.----------5’
y=g(x-1)=|lg(x-1)|=
;-------------------7’
在x∈(1,2]时,y=g(x-1)单调递减,
又y=g(x-1)∈[0,+∞),
在x∈[2,3)时,y=g(x-1)单调递增,
y=g(x-1)∈[0,lg2),----------------9’
所以0<1-a<lg2,即1-lg2<a<1,--------------------------11’
由x1<x2,可知x1∈(1,2),x2∈(2,3),
且
即
相加消去a,可得lg(x1-1)+lg(x2-1)=0,
即(x1-1)(x2-1)=1,
展开并整理得x1x2=x1+x2,即
+
=1.--------------------14’
所以a+
+
的取值范围为(2-lg2,2).------------------16’
∴由题有a-1=1,得a=2;-------------2’
∴f(x)=x2的单调递减区间为(-∞,0)-------------4’
(Ⅱ)方程g(x-1)+f(1)=0化为g(x-1)=1-a,
由题意函数y=g(x-1)与y=1-a在x∈(1,3)上有两不同交点.----------5’
y=g(x-1)=|lg(x-1)|=
|
在x∈(1,2]时,y=g(x-1)单调递减,
又y=g(x-1)∈[0,+∞),
在x∈[2,3)时,y=g(x-1)单调递增,
y=g(x-1)∈[0,lg2),----------------9’
所以0<1-a<lg2,即1-lg2<a<1,--------------------------11’
由x1<x2,可知x1∈(1,2),x2∈(2,3),
且
|
|
相加消去a,可得lg(x1-1)+lg(x2-1)=0,
即(x1-1)(x2-1)=1,
展开并整理得x1x2=x1+x2,即
1 |
x1 |
1 |
x2 |
所以a+
1 |
x1 |
1 |
x2 |
看了 已知函数f(x)=(a-1)...的网友还看了以下:
1.若二次函数f(x)满足f(3+x)=f(3-x),则方程f(x)=0有两个实根x1,x2,则x1 2020-03-30 …
函数(1/2)的-x2+2x方的最小值为? 2020-05-14 …
已知函数f(x)=-x-x^3,x1,x2,x3属于R,且x1+x2>0,x2+x3>0,x3+x 2020-05-16 …
若x1x2是方程x平方+x-1=0的两个根则x1平方+x2平方的值 2020-05-16 …
设定义在R上的函数f(x)对任意x1、x2满足f(x1+x2)=f(x1)f(x2),且f(x)在 2020-05-17 …
已知定义在R上的函数f(x),满足f(-x)+f(x)=0,x1,x2,x3,属于R,且x1+x2 2020-06-06 …
C语言解方程问题#include"stdio.h"#include"math.h"floatf(f 2020-07-23 …
1、函数F(X)对于任意X1,X2属于(0,正无穷)恒有F(X1+X2)=F(X1)+F(X2), 2020-08-01 …
判断y=|x-4|-4/根号下9-x2次方的奇偶性 2020-08-01 …
在函数Y=f(x)的图像上任取两点A(x1,y1)B(X2,Y2)称△y/△x=y2-y1/x2-x 2020-11-01 …