早教吧作业答案频道 -->数学-->
求不定积分∫(ln^2)x/xdx用换元法解.
题目详情
求不定积分∫(ln^2)x/xdx
用换元法解.
用换元法解.
▼优质解答
答案和解析
(1)
∫xe^-x dx=-∫x d(e^-x)
=-xe^(-x)+∫e^-x dx
=-xe^(-x)-e^(-x)+C
=-(x+1)e^(-x)+C
(2)
∫x³lnx dx
=∫lnx d(x⁴/4)
=(1/4)x⁴lnx-(1/4)∫x⁴d(lnx)
=(1/4)x⁴lnx-(1/4)∫x³ dx
=(1/4)x⁴lnx-(1/4)*x⁴/4+C
=(1/4)x⁴lnx-(1/16)x⁴+C
=(1/16)x⁴(4lnx-1)+C
(3)
设u=x+1,x=u-1,dx=du
∫xln(x+1) dx
=∫(u-1)lnu du
=∫ulnu du-∫lnu du
=∫lnu d(u²/2)-(ulnu-∫u dlnu)
=(1/2)u²lnu-(1/2)∫u² dlnu-(ulnu-∫du)
=(1/2)u²lnu-(1/2)∫u du-(ulnu-1)
=(1/2)u²lnu-(1/4)u²-ulnu+C
=(1/2)(x+1)²ln(x+1)-(1/4)(x+1)²-(x+1)ln(x+1)+C
=(1/2)(x²-1)ln(x+1)-(1/4)x(x-2)+C
∫xe^-x dx=-∫x d(e^-x)
=-xe^(-x)+∫e^-x dx
=-xe^(-x)-e^(-x)+C
=-(x+1)e^(-x)+C
(2)
∫x³lnx dx
=∫lnx d(x⁴/4)
=(1/4)x⁴lnx-(1/4)∫x⁴d(lnx)
=(1/4)x⁴lnx-(1/4)∫x³ dx
=(1/4)x⁴lnx-(1/4)*x⁴/4+C
=(1/4)x⁴lnx-(1/16)x⁴+C
=(1/16)x⁴(4lnx-1)+C
(3)
设u=x+1,x=u-1,dx=du
∫xln(x+1) dx
=∫(u-1)lnu du
=∫ulnu du-∫lnu du
=∫lnu d(u²/2)-(ulnu-∫u dlnu)
=(1/2)u²lnu-(1/2)∫u² dlnu-(ulnu-∫du)
=(1/2)u²lnu-(1/2)∫u du-(ulnu-1)
=(1/2)u²lnu-(1/4)u²-ulnu+C
=(1/2)(x+1)²ln(x+1)-(1/4)(x+1)²-(x+1)ln(x+1)+C
=(1/2)(x²-1)ln(x+1)-(1/4)x(x-2)+C
看了 求不定积分∫(ln^2)x/...的网友还看了以下:
求y=ln(x^2-5x+4)+ln(x-5)^2定义域RT 2020-05-21 …
关于arctan积分的问题我们都知道∫1/(x^2+1)dx=arctanx+C但是如果分解x^2 2020-06-13 …
求此极限,n趋于无穷,limln(1+1/n)^2+(1+2/n)^2+(1+n/n)^2liml 2020-06-14 …
lim[e^x*sinx-x(1+x)]/[x^2*sinx],lim[ln(1+x)*ln(1- 2020-06-28 …
-2∫(1/(t^2-1))dt积分的运算与转换问题.-2∫(1/(t^2-1))dt好像答案是等 2020-07-21 …
求y=2e^x+e^-x的极值//为什么两边取自然对数?由y=2e^x+e^(-x)对y求导:y′ 2020-08-02 …
lnx/(1+x)的不定积分,分部积分法,得到了一个循环式如下(1)∫lnx/1+xdx=lnxl 2020-08-03 …
对数问题1.1/2[ln12+lnx+ln(x^2-4)-ln(x+2)]化简2.log0.8为底2 2020-11-17 …
关于求极限的问题lim根号(4x^2+x)乘ln(2+1/X)-2ln2*x,运用倒代换变成根号(4 2021-01-07 …
关于n趋于无穷,(n+1/2)ln(1+1/n)-1用泰勒公式得到和答案一样的1/12n^2.把(n 2021-01-07 …