早教吧作业答案频道 -->数学-->
如图,AB是⊙O的直径,过圆上一点D作⊙O的切线DE,与过点A的直线垂直于E,弦BD的延长线与直线AE交于C点.(1)求证:点D为BC的中点;(2)设直线EA与⊙O的另一交点为F,求证:CA2-AF2=4CE•EA
题目详情
如图,AB是⊙O的直径,过圆上一点D作⊙O的切线DE,与过点A的直线垂直于E,弦BD的
延长线与直线AE交于C点.
(1)求证:点D为BC的中点;
(2)设直线EA与⊙O的另一交点为F,求证:CA2-AF2=4CE•EA;
(3)若弧AD=
弧DB,⊙O的半径为r.求由线段DE,AE和弧AD所围成的阴影部分的面积.

(1)求证:点D为BC的中点;
(2)设直线EA与⊙O的另一交点为F,求证:CA2-AF2=4CE•EA;
(3)若弧AD=
1 |
2 |
▼优质解答
答案和解析
(1)证明:连接OD,
∵ED为⊙O切线,∴OD⊥DE;
∵DE⊥AC,∴OD∥AC;
∵O为AB中点,
∴D为BC中点;
(2)证明:连接BF,
∵AB为⊙O直径,
∴∠CFB=∠CED=90°;
∴ED∥BF;
∵D为BC中点,
∴E为CF中点;
∴CA2-AF2=(CA-AF)(CA+AF)
=(CE+AE-EF+AE)•CF=2AE•CF;
∴CA2-AF2=4CE•AE;
(3)∵
=
,
∴∠AOD=60°;
连接DA,可知△OAD为等边三角形,
∴OD=AD=r,
在Rt△DEA中,∠EDA=30°,
∴EA=
r,ED=
r;
∴S阴影=S梯形AODE-S扇形AOD=
−
πr2
=
r2−
πr2.

∵ED为⊙O切线,∴OD⊥DE;
∵DE⊥AC,∴OD∥AC;
∵O为AB中点,
∴D为BC中点;
(2)证明:连接BF,
∵AB为⊙O直径,
∴∠CFB=∠CED=90°;

∴ED∥BF;
∵D为BC中点,
∴E为CF中点;
∴CA2-AF2=(CA-AF)(CA+AF)
=(CE+AE-EF+AE)•CF=2AE•CF;
∴CA2-AF2=4CE•AE;
(3)∵
![]() |
AD |
1 |
2 |
![]() |
DB |

∴∠AOD=60°;
连接DA,可知△OAD为等边三角形,
∴OD=AD=r,
在Rt△DEA中,∠EDA=30°,
∴EA=
1 |
2 |
| ||
2 |
∴S阴影=S梯形AODE-S扇形AOD=
(
| ||||||
2 |
1 |
6 |
=
3
| ||
8 |
1 |
6 |
看了 如图,AB是⊙O的直径,过圆...的网友还看了以下:
如图所示在四边形ABCD中∠B等于90°AD平行于BC点E在BC延长线上JP的绝对值AE等于2点F 2020-05-12 …
定义:离心率e=5-12的椭圆为“黄金椭圆”,对于椭圆E:x2a2+y2b2=1(a>b>0),c 2020-05-15 …
定义:离心率e=5−12的椭圆为“黄金椭圆”,对于椭圆E:x2a2+y2b2=1(a>b>0),c 2020-05-15 …
如图,在平面直角坐标系xOy中,直径为10的圆E交x轴于点A,B,交y轴于点C,D,且点A,B的坐 2020-05-15 …
如图,在平面直角坐标系xOy中,直径为10的圆E交x轴于点A,B,交y轴于点C,D,且点A,B的坐 2020-05-15 …
已知椭圆E:x^2/25+y^2/16=1,点p(x,y)是椭圆上一点,求x^2+y^2最值(2) 2020-06-21 …
如图,直线y=2x+3与x轴交于点A,与y轴交于点B,D是射线AB上的动点(不与点A重合),DN⊥ 2020-06-23 …
已知圆C:x2+y2-8y+12=0,直线l经过点D(-2,0),且斜率为k.(1)求以线段CD为 2020-07-26 …
抛物线y=-x^2-2kx+3k^2(k>0)交x轴于A,B两点,交y轴于点C,以AB为直径的圆E 2020-07-31 …
平行四边形ABCD中,AB=4,BC=2,∠A=60度(1)求证BD垂直BC(2)延长CB至G,B 2020-08-02 …