早教吧作业答案频道 -->数学-->
如图,AB是⊙O的直径,过圆上一点D作⊙O的切线DE,与过点A的直线垂直于E,弦BD的延长线与直线AE交于C点.(1)求证:点D为BC的中点;(2)设直线EA与⊙O的另一交点为F,求证:CA2-AF2=4CE•EA
题目详情
如图,AB是⊙O的直径,过圆上一点D作⊙O的切线DE,与过点A的直线垂直于E,弦BD的
延长线与直线AE交于C点.
(1)求证:点D为BC的中点;
(2)设直线EA与⊙O的另一交点为F,求证:CA2-AF2=4CE•EA;
(3)若弧AD=
弧DB,⊙O的半径为r.求由线段DE,AE和弧AD所围成的阴影部分的面积.

(1)求证:点D为BC的中点;
(2)设直线EA与⊙O的另一交点为F,求证:CA2-AF2=4CE•EA;
(3)若弧AD=
1 |
2 |
▼优质解答
答案和解析
(1)证明:连接OD,
∵ED为⊙O切线,∴OD⊥DE;
∵DE⊥AC,∴OD∥AC;
∵O为AB中点,
∴D为BC中点;
(2)证明:连接BF,
∵AB为⊙O直径,
∴∠CFB=∠CED=90°;
∴ED∥BF;
∵D为BC中点,
∴E为CF中点;
∴CA2-AF2=(CA-AF)(CA+AF)
=(CE+AE-EF+AE)•CF=2AE•CF;
∴CA2-AF2=4CE•AE;
(3)∵
=
,
∴∠AOD=60°;
连接DA,可知△OAD为等边三角形,
∴OD=AD=r,
在Rt△DEA中,∠EDA=30°,
∴EA=
r,ED=
r;
∴S阴影=S梯形AODE-S扇形AOD=
−
πr2
=
r2−
πr2.

∵ED为⊙O切线,∴OD⊥DE;
∵DE⊥AC,∴OD∥AC;
∵O为AB中点,
∴D为BC中点;
(2)证明:连接BF,
∵AB为⊙O直径,
∴∠CFB=∠CED=90°;

∴ED∥BF;
∵D为BC中点,
∴E为CF中点;
∴CA2-AF2=(CA-AF)(CA+AF)
=(CE+AE-EF+AE)•CF=2AE•CF;
∴CA2-AF2=4CE•AE;
(3)∵
![]() |
AD |
1 |
2 |
![]() |
DB |

∴∠AOD=60°;
连接DA,可知△OAD为等边三角形,
∴OD=AD=r,
在Rt△DEA中,∠EDA=30°,
∴EA=
1 |
2 |
| ||
2 |
∴S阴影=S梯形AODE-S扇形AOD=
(
| ||||||
2 |
1 |
6 |
=
3
| ||
8 |
1 |
6 |
看了 如图,AB是⊙O的直径,过圆...的网友还看了以下:
E是平行四边形ABCD对角线交点,过点A,B,C,D,E分别向直线l引垂线,垂足分别为E是平行四边形 2020-03-31 …
证明e的a次方加上e的负a次方大于e的b次方加上e的负b次方a>b>0在3月14日16点前完成。 2020-04-05 …
(A+E)=A+2A+E的证明,大学线代 2020-05-13 …
已知a>b>0,求证:e的a次方+e的负a次方>e的b次方+e的负b次方. 2020-05-15 …
大家看看我这个矩阵的证明哪里有问题已知A,B为n阶方阵,且B=B^2,A=B+E,证明A可逆,并求 2020-06-09 …
x→∞时[1+(1/X)]^x=e的证明极限重要公式之一 2020-06-14 …
如图,在三角形ABC中,角C等于2角B,D是BC上的一点,且AD垂直AB,点E是BD的中点,连接E 2020-06-27 …
证明题.如图,已知E是ABCD外一点,角D=角B+角E,求证:AB平行于CD如图,已知E是ABCD 2020-07-20 …
已知三角形ABC中,AB等于AC,AD是BC边上的中线,CF//BA,BF交AD于点P,交AC于点 2020-08-03 …
根据测试距离为5m的标准视力表制作一个测试距离为3m的视力表,如果标准视力表中“E”的长a是3.6c 2020-12-01 …