早教吧作业答案频道 -->数学-->
如图,AB是⊙O的直径,过圆上一点D作⊙O的切线DE,与过点A的直线垂直于E,弦BD的延长线与直线AE交于C点.(1)求证:点D为BC的中点;(2)设直线EA与⊙O的另一交点为F,求证:CA2-AF2=4CE•EA
题目详情
如图,AB是⊙O的直径,过圆上一点D作⊙O的切线DE,与过点A的直线垂直于E,弦BD的
延长线与直线AE交于C点.
(1)求证:点D为BC的中点;
(2)设直线EA与⊙O的另一交点为F,求证:CA2-AF2=4CE•EA;
(3)若弧AD=
弧DB,⊙O的半径为r.求由线段DE,AE和弧AD所围成的阴影部分的面积.
延长线与直线AE交于C点.(1)求证:点D为BC的中点;
(2)设直线EA与⊙O的另一交点为F,求证:CA2-AF2=4CE•EA;
(3)若弧AD=
| 1 |
| 2 |
▼优质解答
答案和解析
(1)证明:连接OD,
∵ED为⊙O切线,∴OD⊥DE;
∵DE⊥AC,∴OD∥AC;
∵O为AB中点,
∴D为BC中点;
(2)证明:连接BF,
∵AB为⊙O直径,
∴∠CFB=∠CED=90°;
∴ED∥BF;
∵D为BC中点,
∴E为CF中点;
∴CA2-AF2=(CA-AF)(CA+AF)
=(CE+AE-EF+AE)•CF=2AE•CF;
∴CA2-AF2=4CE•AE;
(3)∵
=
,
∴∠AOD=60°;
连接DA,可知△OAD为等边三角形,
∴OD=AD=r,
在Rt△DEA中,∠EDA=30°,
∴EA=
r,ED=
r;
∴S阴影=S梯形AODE-S扇形AOD=
−
πr2
=
r2−
πr2.
(1)证明:连接OD,∵ED为⊙O切线,∴OD⊥DE;
∵DE⊥AC,∴OD∥AC;
∵O为AB中点,
∴D为BC中点;
(2)证明:连接BF,
∵AB为⊙O直径,
∴∠CFB=∠CED=90°;

∴ED∥BF;
∵D为BC中点,
∴E为CF中点;
∴CA2-AF2=(CA-AF)(CA+AF)
=(CE+AE-EF+AE)•CF=2AE•CF;
∴CA2-AF2=4CE•AE;
(3)∵
![]() |
| AD |
| 1 |
| 2 |
![]() |
| DB |

∴∠AOD=60°;
连接DA,可知△OAD为等边三角形,
∴OD=AD=r,
在Rt△DEA中,∠EDA=30°,
∴EA=
| 1 |
| 2 |
| ||
| 2 |
∴S阴影=S梯形AODE-S扇形AOD=
(
| ||||||
| 2 |
| 1 |
| 6 |
=
3
| ||
| 8 |
| 1 |
| 6 |
看了 如图,AB是⊙O的直径,过圆...的网友还看了以下:
若2<a<4,化简|2-a|+|a-4|. 2020-06-03 …
如图是人体屈肘时肌肉的协作示意图.请根据图回答:(1)图中a是.(2)当人伸肘时,b处于状态.(3 2020-06-28 …
已知人的有耳垂(A)对无耳垂(a)为显性.某家系三代6人的耳垂遗传情况如下表.下列判断不正确的是( 2020-07-06 …
在△ABC中,角A、B、C所对的边分别为a,b,c.已知c=2.acosB-bcosA=72.(I 2020-07-22 …
已知抛物线y2=6x上的两个动点A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=4 2020-07-30 …
在下列四个命题中,假命题为()A.如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直 2020-08-02 …
如图,△A1A2B是直角三角形,∠A1A2B=90°,且A1A2=A2B=4,A2A3⊥A1B,垂足 2020-11-02 …
设平面α⊥平面β,且α∩β=l,直线a⊂α,直线b⊂β,且a不与l垂直,b不与l垂直,那么a与b() 2020-11-02 …
(20的的•顺德区模拟)下面是某知名网站中某物质的部分合成路线a-4.线键式中的虚线表示共价键.回答 2021-01-09 …
下面诗句同是写秋景的,然而景物的特点却截然不同,请说说它们的不同之处。(2分)A.4.下面诗句同是写 2021-01-25 …
