早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设函数f(x,y)在(0,0)的邻域连续,F(t)=∬x2+y2≤t2f(x,y)dxdy.求limt→0F′(t)t.

题目详情
设函数f(x,y)在(0,0)的邻域连续,F(t)=
x2+y2≤t2
f(x,y)dxdy.求
lim
t→0
F′(t)
t
▼优质解答
答案和解析
由于F(t)=
x2+y2≤t2
f(x,y)dxdy=
0
t
0
rf(rcosθ,rsinθ)dr
=
t
0
r[
0
f(rcosθ,rsinθ)dθ]dr
因此,F′(t)=t
0
f(tcosθ,tsinθ)dθ
lim
t→0
F′(t)
t
=
lim
t→0
t
0
f(tcosθ,tsinθ)dθ
t
=
lim
t→0
0
f(tcosθ,tsinθ)dθ(积分中值定理)
=
lim
t→0
f(tcosξ,tsinξ)
0

而函数f(x,y)在(0,0)的邻域连续,因此
=
lim
t→0
f(tcosξ,tsinξ)=f(0,0)
lim
t→0
F′(t)
t
=f(0,0)
0
dθ=2πf(0,0)