早教吧作业答案频道 -->其他-->
(2010•安庆模拟)三棱锥P-ABC中△PAC是边长为4的等边三角形,△ABC为等腰直角三角形,∠ACB=90°,平面PAC⊥面ABC,D、E分别为AB、PB的中点.(1)求证AC⊥PD;(2)求二面角E-AC-B的正切值.(3
题目详情

(1)求证AC⊥PD;
(2)求二面角E-AC-B的正切值.
(3)求三棱锥P-CDE与三棱锥P-ABC的体积之比.
▼优质解答
答案和解析
(1)证:取AC中点O,PO⊥AC,又面PAC⊥面ABC∴PO⊥面ABC,连OD,则OD⊆面PBC,则DO⊥AC,∴AC⊥面POD,AC⊥PD…(3分)
(2)连OB,过E作EF⊥OB于F
Q面POB⊥面ABC∴EF⊥面ABC 过F作FG⊥AC
连EG知EG⊥AC∠EGF为二面角E-AC-B的平面角
在VPOB中,EFP=
PO=
在VOBC中,FGP=
BC=2tan∠EGF=
…(8分)
(3)VP-CDE=VD-PCE,E为PB中点
∴SVPCE=
SVPBC,VD−PCE=
VD−PBC=
VP−DBC=
VP−ABC
即
=
…(13分)
(2)连OB,过E作EF⊥OB于F
Q面POB⊥面ABC∴EF⊥面ABC 过F作FG⊥AC
连EG知EG⊥AC∠EGF为二面角E-AC-B的平面角
在VPOB中,EFP=
1 |
2 |
3 |
在VOBC中,FGP=
1 |
2 |
| ||
2 |
(3)VP-CDE=VD-PCE,E为PB中点
∴SVPCE=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
4 |
即
VP−CDE |
VP−ABC |
1 |
4 |
看了 (2010•安庆模拟)三棱锥...的网友还看了以下:
11.如图所示,在斜面a上放一个小的斜面b,两个斜面的横截面是相似三角形,小斜面b在大斜面a上刚好 2020-05-13 …
已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b垂直平面αB.b与平面α相交C. 2020-05-13 …
设a、b是两个不同的平面,给出下列命题:①若平面a内的直线l垂直于平面b内的任意直线,则a⊥b②若 2020-05-13 …
双面绒转移印花,两边都印花型.打卷后一面沾上了另一面的颜色.是不是升华牢度不好?我是分二次印的.先 2020-05-17 …
a.b是异面直线,a属于面A,b属于面B,a平行面B,b平行面A,求a平行b哥哥姐姐急用 2020-06-04 …
设平面a‖平面b,A∈a,B∈b,c是AB的中点,当A,B分别在平面a,b内运动时,那么所有的动点 2020-06-13 …
设平面α⊥平面β,在平面α内的一条直线a垂直于平面β内的一条直线b,则A.直线a必垂直于平面βB. 2020-06-15 …
怎么判断向量是否共面?例如下面这题需要判断选项中的项量是否共面:若{a,b,c}构成空间的一个基底 2020-06-22 …
若a,b是空间两条不相交的直线,a属于平面α,b属于平面β,且α‖β,a,b的距离为h1,α,β的 2020-06-27 …
已知平面a平行平面b,且点A在平面a上,点B在平面b上,AB=6cm,AB在平面b上的投影为3cm 2020-07-06 …