早教吧作业答案频道 -->数学-->
已知动圆M在y轴右侧与圆F:(x-1)2+y2=1外切,又与y轴相切.(1)求圆心M的轨迹C的方程;(2)已知点P在轨迹C上,过点F作直线l与PF垂直,记l与直线x=-1的交点为R,试探究直线PR与轨迹C是否
题目详情
已知动圆M在y轴右侧与圆F:(x-1)2+y2=1外切,又与y轴相切.
(1)求圆心M的轨迹C的方程;
(2)已知点P在轨迹C上,过点F作直线l与PF垂直,记l与直线x=-1的交点为R,试探究直线PR与轨迹C是否存在唯一交点,并说明理由.
(1)求圆心M的轨迹C的方程;
(2)已知点P在轨迹C上,过点F作直线l与PF垂直,记l与直线x=-1的交点为R,试探究直线PR与轨迹C是否存在唯一交点,并说明理由.
▼优质解答
答案和解析
(1)设M(x,y),(x>0),
依题意知|MF|=x+1,
即
=x+1,
整理,得圆心M的轨迹C的方程y2=4x.(x>0)
(2)由(1)知轨迹C的方程y2=4x.(x>0)
设R(-1,r),P(
,p),(p>0),
∵FR⊥FP,∴
•
=0,
∴(-2,r)•(
−1,p)=0,
∴-2(
−1)+rp=0,解得r=
−
,
直线PR的方程为
=
,
把r=
−
代入并整理,得2x=py-
,
联立y2=4x,消去x,得(y-p)2=0,
方程有两个相等的实数根,
∴直线PR与轨迹C存在唯一交点.
依题意知|MF|=x+1,
即
(x−1)2+y2 |
整理,得圆心M的轨迹C的方程y2=4x.(x>0)
(2)由(1)知轨迹C的方程y2=4x.(x>0)
设R(-1,r),P(
p2 |
4 |
∵FR⊥FP,∴
FR |
FP |
∴(-2,r)•(
p2 |
4 |
∴-2(
p2 |
4 |
p |
2 |
2 |
p |
直线PR的方程为
y−p |
r−p |
x−
| ||
−1−
|
把r=
p |
2 |
2 |
p |
p2 |
2 |
联立y2=4x,消去x,得(y-p)2=0,
方程有两个相等的实数根,
∴直线PR与轨迹C存在唯一交点.
看了 已知动圆M在y轴右侧与圆F:...的网友还看了以下:
已知点A(3,0)为圆x2+y2=1外一点,P为圆上任意一点,若AP的中点为M,当P在圆上运动时, 2020-04-13 …
过圆x2+y2=r2外一点P(x0,y0)两条切线,切点分别为A、B,求证:切点弦AB所在的直线方 2020-07-10 …
P(X1,Y1)是直线l:f(X,Y)=0上一点,Q(X2,Y2)是l外一点,则方程f(X,Y)= 2020-07-15 …
已知圆C:x2+y2+2x-4y+1=0,若圆C的切线在x轴y轴上截距相等已知圆C:x2+y2+2 2020-07-30 …
求过抛物线外一点M(x0,y0)做两条斜线,求切点弦所在的方程?在抛物线上的点(x1,y1)的切线 2020-07-30 …
求过抛物线外一点M(x0,y0)做两条斜线,求切点弦所在的方程?在抛物线上的点(x1,y1)的切线 2020-07-30 …
高手看下这个求椭圆切点弦的过程,我不大懂~过椭圆X2/4+y2/2=1外一点P(4,1)向椭圆作切 2020-07-31 …
求过圆外一点的直线与已知圆的切点坐标已知圆心P1(x1,y1),半径R,圆外一点p2(x2,y2) 2020-07-31 …
已知点P(2,1)是圆O:x2+y2=4外一点.(1)过点P引圆的切线,求切线方程;(2)过点P引 2020-07-31 …
1·过圆外一点P(a,b)作圆x2+y2=r2的两条切线,切点为AB,求直线AB的方程2、已知点P 2020-07-31 …