早教吧作业答案频道 -->其他-->
已知:如图1,PA切⊙O于A点,割线PCB交⊙O于C、B两点,D是线段BP上一点,且PD2=PB•PC,直线AD交⊙O于E点.(1)求证:AD平分∠BAC;(2)求证:AB•AC=AD•AE;(3)若把题中条件“D是线段BP上一
题目详情
已知:如图1,PA切⊙O于A点,割线PCB交⊙O于C、B两点,D是线段BP上一点,且PD2=PB•PC,直线AD交⊙O于E点.
(1)求证:AD平分∠BAC;
(2)求证:AB•AC=AD•AE;
(3)若把题中条件“D是线段BP上一点”改为“D是线段BP延长线上一点”(如图2),则题(2)中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.

(1)求证:AD平分∠BAC;
(2)求证:AB•AC=AD•AE;
(3)若把题中条件“D是线段BP上一点”改为“D是线段BP延长线上一点”(如图2),则题(2)中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.

▼优质解答
答案和解析
(1)证明:∵PA是⊙O的切线,
∴∠PAC=∠ABC,PA2=PC•PB
∵PD2=PB•PC
∴PA=PD
∴∠PAD=∠PDA
∴∠PAC+∠DAC=∠ABC+∠BAE
∵∠PAC=∠ABC
∴∠DAC=∠BAE
∴AD平分∠BAC;
(2)证明:连接BE,则∠AEB=∠ACB
∵∠BAE=∠CAD
∴△ABE∽△ADC
∴
=
即:AB•AC=AD•AE;
(3)(2)的结论仍然成立,
证明:连接BE
∵AB是直径
∴∠AEB=∠ACB=∠ACD=90°
∵PA是⊙O的切线
∴PA2=PC•PB,∠BAP=90°
∵PD2=PB•PC
∴PA=PD
∴∠PAD=∠PDA
∵∠BAP=90°,∠BEA=90°
∴∠BAE+∠PAD=∠BAE+∠EBA=90°
∴∠PAD=∠EBA
∵∠BEA=∠ACD=90°
∴△ABE∽△ADC
∴
=
,即:AB•AC=AD•AE
因此,(2)的结论仍然成立.

∴∠PAC=∠ABC,PA2=PC•PB
∵PD2=PB•PC
∴PA=PD
∴∠PAD=∠PDA
∴∠PAC+∠DAC=∠ABC+∠BAE
∵∠PAC=∠ABC
∴∠DAC=∠BAE
∴AD平分∠BAC;
(2)证明:连接BE,则∠AEB=∠ACB
∵∠BAE=∠CAD
∴△ABE∽△ADC
∴
AB |
AE |
AD |
AC |
(3)(2)的结论仍然成立,
证明:连接BE
∵AB是直径
∴∠AEB=∠ACB=∠ACD=90°
∵PA是⊙O的切线
∴PA2=PC•PB,∠BAP=90°
∵PD2=PB•PC
∴PA=PD
∴∠PAD=∠PDA
∵∠BAP=90°,∠BEA=90°
∴∠BAE+∠PAD=∠BAE+∠EBA=90°
∴∠PAD=∠EBA
∵∠BEA=∠ACD=90°
∴△ABE∽△ADC
∴
AB |
AE |
AD |
AC |
因此,(2)的结论仍然成立.
看了 已知:如图1,PA切⊙O于A...的网友还看了以下:
矿石A高温生成B+C,B+水生成D,D+C生成CACO3+H2O,A,B,C,D各是什么,A-B+C 2020-03-31 …
一个栈的入栈序列是a b c d e,则栈不可能的输出序列是( )。A.e d c b a B.d 2020-05-23 …
把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD 2020-06-25 …
如图,已知数轴上的点A,O,B,C,D分别表示数-2,0,1,2,3,则表示数2-2的点P应落在线 2020-06-27 …
Inta=3,b=5,c=7;If(a>b)a=b;c=a;If(c!=a)c=b;Printf( 2020-07-09 …
如图,已知数轴上的点A,B,C,D分别表示数-2,1,2,3,则表示数5-5的点P应落在线段()A 2020-07-30 …
某公路的同一侧有A、B、C三个村庄,要在公路边建一货栈D,向A、B、C三个村庄送农用物资,路线是D→ 2020-11-22 …
1lookblueA脸色发青B脸肿了C闷闷不乐D看上去变蓝2inthreeandfoursA说三道四 2020-12-23 …
A指示B和甲乙去报复C,但是C跟D在一起,甲乙打C的时候,D要帮C,B上去就捅D一刀致死,问D的死亡 2021-01-13 …
A指示B和甲乙去报复C,但是C跟D在一起,甲乙打C的时候,D要帮C,B上去就捅D一刀致死,问D的死亡 2021-01-13 …