早教吧作业答案频道 -->其他-->
已知:如图1,PA切⊙O于A点,割线PCB交⊙O于C、B两点,D是线段BP上一点,且PD2=PB•PC,直线AD交⊙O于E点.(1)求证:AD平分∠BAC;(2)求证:AB•AC=AD•AE;(3)若把题中条件“D是线段BP上一
题目详情
已知:如图1,PA切⊙O于A点,割线PCB交⊙O于C、B两点,D是线段BP上一点,且PD2=PB•PC,直线AD交⊙O于E点.
(1)求证:AD平分∠BAC;
(2)求证:AB•AC=AD•AE;
(3)若把题中条件“D是线段BP上一点”改为“D是线段BP延长线上一点”(如图2),则题(2)中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.

(1)求证:AD平分∠BAC;
(2)求证:AB•AC=AD•AE;
(3)若把题中条件“D是线段BP上一点”改为“D是线段BP延长线上一点”(如图2),则题(2)中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.

▼优质解答
答案和解析
(1)证明:∵PA是⊙O的切线,
∴∠PAC=∠ABC,PA2=PC•PB
∵PD2=PB•PC
∴PA=PD
∴∠PAD=∠PDA
∴∠PAC+∠DAC=∠ABC+∠BAE
∵∠PAC=∠ABC
∴∠DAC=∠BAE
∴AD平分∠BAC;
(2)证明:连接BE,则∠AEB=∠ACB
∵∠BAE=∠CAD
∴△ABE∽△ADC
∴
=
即:AB•AC=AD•AE;
(3)(2)的结论仍然成立,
证明:连接BE
∵AB是直径
∴∠AEB=∠ACB=∠ACD=90°
∵PA是⊙O的切线
∴PA2=PC•PB,∠BAP=90°
∵PD2=PB•PC
∴PA=PD
∴∠PAD=∠PDA
∵∠BAP=90°,∠BEA=90°
∴∠BAE+∠PAD=∠BAE+∠EBA=90°
∴∠PAD=∠EBA
∵∠BEA=∠ACD=90°
∴△ABE∽△ADC
∴
=
,即:AB•AC=AD•AE
因此,(2)的结论仍然成立.

∴∠PAC=∠ABC,PA2=PC•PB
∵PD2=PB•PC
∴PA=PD
∴∠PAD=∠PDA
∴∠PAC+∠DAC=∠ABC+∠BAE
∵∠PAC=∠ABC
∴∠DAC=∠BAE
∴AD平分∠BAC;
(2)证明:连接BE,则∠AEB=∠ACB
∵∠BAE=∠CAD
∴△ABE∽△ADC
∴
AB |
AE |
AD |
AC |
(3)(2)的结论仍然成立,
证明:连接BE
∵AB是直径
∴∠AEB=∠ACB=∠ACD=90°
∵PA是⊙O的切线
∴PA2=PC•PB,∠BAP=90°
∵PD2=PB•PC
∴PA=PD
∴∠PAD=∠PDA
∵∠BAP=90°,∠BEA=90°
∴∠BAE+∠PAD=∠BAE+∠EBA=90°
∴∠PAD=∠EBA
∵∠BEA=∠ACD=90°
∴△ABE∽△ADC
∴
AB |
AE |
AD |
AC |
因此,(2)的结论仍然成立.
看了 已知:如图1,PA切⊙O于A...的网友还看了以下:
怎么证(a+1/a)(b+1/b)大于等于25/4?错解:正解:(a-1)² ≧ 0 欲证原式成立 2020-04-06 …
设a、b都是正整数,a²+ab+1被b²+ab+1整除,证明:a=b答案只有一句话:应用 b(a² 2020-05-16 …
1.已知a,b,c∈R.a+b+c=1a²+b²+c²=1/2求证c≥02(1)已知a,c是正实数 2020-07-14 …
证明A+B的行列式为零已知有n阶矩阵A,B,且A^2=E=B^2,det(A)+det(B)=0, 2020-07-20 …
比较法证明不等式可分为作差比较法和作商比较法:(1)要证明a>b,只要证明;要证a<b,只要证明. 2020-08-01 …
请问f(x)=a^x-b^x(a>b>1)是单增的吗?怎么证?1>a>b时呢?请问f(x)=a^x- 2020-11-03 …
求一道数学题解(急)1/a+1/b+1/c=1/a+b+c,求证啊a+b=0或b+c=0或a+c=0 2020-11-05 …
定义运算a*b=a(1-b),下面给出了几个结论:1.a*b=b*a2.若a+b=0,则(a*a)+ 2020-11-08 …
有个家伙竟然证明了1=2!快进来发现他的错误.条件:若a=b.且a,b>0,则1=2.证明:①a,b 2020-11-13 …
一道较难的不等式已知非负实数a,b,c满足ab+bc+ca=1,求证:1/(a+b)+1(b+c)+ 2020-12-07 …