早教吧作业答案频道 -->数学-->
如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.
题目详情
如图,点O在∠APB的平分线上,⊙O与PA相切于点C.

(1)求证:直线PB与⊙O相切;
(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.

(1)求证:直线PB与⊙O相切;
(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.
▼优质解答
答案和解析
(1)证明:连接OC,作OD⊥PB于D点.
∵⊙O与PA相切于点C,
∴OC⊥PA.
∵点O在∠APB的平分线上,OC⊥PA,OD⊥PB,
∴OD=OC.
∴直线PB与⊙O相切;
(2)设PO交⊙O于F,连接CF.
∵OC=3,PC=4,∴PO=5,PE=8.
∵⊙O与PA相切于点C,
∴∠PCF=∠E.
又∵∠CPF=∠EPC,
∴△PCF∽△PEC,
∴CF:CE=PC:PE=4:8=1:2.
∵EF是直径,
∴∠ECF=90°.
设CF=x,则EC=2x.
则x2+(2x)2=62,
解得x=
.
则EC=2x=
.
∵⊙O与PA相切于点C,
∴OC⊥PA.
∵点O在∠APB的平分线上,OC⊥PA,OD⊥PB,
∴OD=OC.
∴直线PB与⊙O相切;
(2)设PO交⊙O于F,连接CF.

∵OC=3,PC=4,∴PO=5,PE=8.
∵⊙O与PA相切于点C,
∴∠PCF=∠E.
又∵∠CPF=∠EPC,
∴△PCF∽△PEC,
∴CF:CE=PC:PE=4:8=1:2.
∵EF是直径,
∴∠ECF=90°.
设CF=x,则EC=2x.
则x2+(2x)2=62,
解得x=
6 |
5 |
5 |
则EC=2x=
12 |
5 |
5 |
看了 如图,点O在∠APB的平分线...的网友还看了以下:
把线段P1P2在P3点平分,线段P2P3在P4点平分,P3P4在P5点平分,这样不断地平分法,当n 2020-05-14 …
已知椭圆C:x2a2+y2b2=1(a>b>0)的左焦点为F,右顶点为A,其长轴长是焦距的4倍,且 2020-05-15 …
初三几何证明不要敷衍我AB是圆O直径,BC切圆O于B,OC平行于弦AD,连CD,过D做DE垂直AB 2020-05-15 …
AB是圆O直径,BC切圆O于B,OC平行于弦AD,连CD,过D做DE垂直AB于E,交AC于P第1问 2020-05-15 …
(1)过点P(-3,1)且与直线2x+y-3=0平行的直线的方程;(1)过点P(-3,1)且与直线 2020-06-06 …
关于梯形有哪些定理?里面有什么中点,平行线 2020-07-26 …
已知A,B,C是抛物线y^2=2px上的三点,且BC与x轴垂直,直线AB,AC分别与抛物线的轴交于 2020-07-26 …
一题;已知ABC,是抛物线Y^2=2px上的三个点,且BC与x轴垂直,直线AB,AC分别与抛物线的 2020-07-29 …
已知A、B、C是抛物线y2=2px上的三点,且BC与x轴垂直,直线AB,AC分别与抛物线的轴交于D 2020-08-01 …
反比例函数与一次函数难题直线y=-x-1交两坐标轴于A、B两点,平移线段AB到CD,使两点都落在反比 2021-01-20 …