早教吧作业答案频道 -->数学-->
(2014•安顺)如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C的直线与ED的延长线交于点P,PC=PG.(1)求证:PC是⊙O的切线;(2)当点C在劣弧AD上运动时,其他条
题目详情

(1)求证:PC是⊙O的切线;
(2)当点C在劣弧AD上运动时,其他条件不变,若BG2=BF•BO.求证:点G是BC的中点;
(3)在满足(2)的条件下,AB=10,ED=4
6 |
▼优质解答
答案和解析
(1)证明:连OC,如图,
∵ED⊥AB,
∴∠FBG+∠FGB=90°,
又∵PC=PG,
∴∠1=∠2,
而∠2=∠FGB,∠4=∠FBG,
∴∠1+∠4=90°,即OC⊥PC,
∴PC是⊙O的切线;
(2)证明:连OG,如图,
∵BG2=BF•BO,即BG:BO=BF:BG,
而∠FBG=∠GBO,
∴△BGO∽△BFG,
∴∠OGB=∠BFG=90°,
即OG⊥BG,
∴BG=CG,即点G是BC的中点;
(3)连OE,如图,
∵ED⊥AB,
∴FE=FD,
而AB=10,ED=4
,
∴EF=2
,OE=5,
在Rt△OEF中,OF=
=
=1,
∴BF=5-1=4,
∵BG2=BF•BO,
∴BG2=BF•BO=4×5,
∴BG=2
.

∵ED⊥AB,
∴∠FBG+∠FGB=90°,
又∵PC=PG,
∴∠1=∠2,
而∠2=∠FGB,∠4=∠FBG,
∴∠1+∠4=90°,即OC⊥PC,
∴PC是⊙O的切线;
(2)证明:连OG,如图,
∵BG2=BF•BO,即BG:BO=BF:BG,
而∠FBG=∠GBO,
∴△BGO∽△BFG,
∴∠OGB=∠BFG=90°,
即OG⊥BG,
∴BG=CG,即点G是BC的中点;
(3)连OE,如图,
∵ED⊥AB,
∴FE=FD,
而AB=10,ED=4
6 |
∴EF=2
6 |
在Rt△OEF中,OF=
OE2−EF2 |
52−(2
|
∴BF=5-1=4,
∵BG2=BF•BO,
∴BG2=BF•BO=4×5,
∴BG=2
5 |
看了 (2014•安顺)如图,已知...的网友还看了以下:
如图,已知在正方形ABCD中,AB=2,P是边BC上的任意一点,E是边BC延长线上一点,联结AP,过 2020-03-31 …
如图所示,用一根细线系住重力为G、半径为R的球,其与倾角为α的光滑斜面劈接触,处于静止状态,球与斜 2020-05-17 …
(2010•南宁)如图1,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE 2020-06-12 …
图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2. 2020-06-14 …
在场强为B的水平匀强磁场中,一质量为m、带正电q的小球在O点静止释放,小球的运动曲线如图所示。已知 2020-06-26 …
如图所示,用一根细线系住重力为G、半径为R的球,其与倾角为α的光滑斜面劈接触,处于静止状态,球与斜 2020-06-28 …
的内接△ABC的内切圆,其中A为椭圆的左顶点,(1)求圆G的半径r;(2)过点M(0,1)作圆G的 2020-07-26 …
如图,已知圆G:(x-2)^2+y^2=r^2是椭圆x^2/16+y^2=1的内接△ABC的内切圆 2020-07-31 …
26.(本题满分14分)图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径 2020-11-01 …
如图,一束光线HG从一个实心玻璃球的左面G点处射入,从实心玻璃球的右面射出.现在右图中画出几条折射光 2020-11-25 …