早教吧作业答案频道 -->数学-->
已知P是△ABC所在平面外一点,PA、PB、PC两两垂直,H是△ABC的垂心,求证:PH⊥平面ABC.
题目详情
已知P是△ABC所在平面外一点,PA、PB、PC两两垂直,H是△ABC的垂心,求证:PH⊥平面ABC.
▼优质解答
答案和解析

证明:延长BH交AC于F,延长CH交AB于E,
∵PB⊥PA,PB⊥PC,
∴PB⊥平面PAC,
∵BF⊥AC,
∴PF⊥AC,
∴CA⊥平面PFB,
∵PH⊂平面PFB,
∴PH⊥AC,
同理可证PH⊥AB,
∵AC⊂平面ABC,AB⊂平面ABC,AB∩AC=A,
∴PH⊥平面ABC.

证明:延长BH交AC于F,延长CH交AB于E,
∵PB⊥PA,PB⊥PC,
∴PB⊥平面PAC,
∵BF⊥AC,
∴PF⊥AC,
∴CA⊥平面PFB,
∵PH⊂平面PFB,
∴PH⊥AC,
同理可证PH⊥AB,
∵AC⊂平面ABC,AB⊂平面ABC,AB∩AC=A,
∴PH⊥平面ABC.
看了 已知P是△ABC所在平面外一...的网友还看了以下:
英语翻译四边形ABCD有外接圆的充要条件是$S=sqrt((p-a)*(p-b)*(p-c)*(p- 2020-03-31 …
这个怎么算?已知P(A)=P(B)=P(C)=1/4,P(AB)=0,P(AC)=P(BC)=1/ 2020-05-13 …
求证:四边形ABCD有外接圆的充要条件是S=√((p-a)*(p-b)*(p-c)*(p-d))其 2020-06-23 …
高一下半学期→正弦定理的有关问题三角形面积=2R^2sinAsinBsinC是怎么求到的三角形面积 2020-07-02 …
已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海 2020-07-20 …
三角形周长面积问题“三角形三边为a,b,c,则面积S=根号[p*(p-a)*(p-b)*(p-c) 2020-07-31 …
请教三角形的几个己和恒等式的证明设I,O分别是三角形ABC的内心与外心,p为半周长,a、b、c为边 2020-08-03 …
设如果当事件A与B同时发生时,事件C必发生,则有(A)P(C)≤P(A)+P(B)-1(B)P(C) 2020-11-05 …
S²=(p-a)(p-b)(p-c)(p-d),其中p=½(a+b+c+d)这个公式怎么用S²=(p 2020-11-07 …
7,如果事件ABC相互独立,则下列等式中正确的是()A,P(A+B+C)=P(A)+P(B)+P(C 2020-12-01 …