早教吧作业答案频道 -->数学-->
已知:菱形ABCD中,BD为对角线,|P、Q两点分别在AB、BD上,且满足∠PCQ=∠ABD,(1)如图1,当∠BAD=90°时,证明:DQ+BP=CD;(2)如图2,当∠BAD=120°时,则
题目详情
已知:菱形ABCD中,BD为对角线,|P、Q两点分别在AB、BD上,且满足∠PCQ=∠ABD,
(1)如图1,当∠BAD=90°时,证明:
DQ+BP=CD;
(2)如图2,当∠BAD=120°时,则______
(1)如图1,当∠BAD=90°时,证明:

(2)如图2,当∠BAD=120°时,则______
▼优质解答
答案和解析
(1)当∠BAD=90°时四边形ABCD是正方形,易证△APC∽△DQC,则可以得到AP=
DQ,则可以证得;
(2)作∠QCK=∠PCQ,过B作BL∥CK,连接AC,易证△DLB∽△DQC则DL=
DQ,然后证明△ACP≌△DCK,即可证得;
(3)设BC=5k,则MC=7k,过C作CG⊥AB于G,则∠CGB=90°,在直角△BCG中,利用三角函数求得BG,CG,然后在直角△MCG中,利用勾股定理求得MG的长,证明△AME∽△DCE,根据相似三角形的对应边的比相等求得AE的长,延长CF、BM交于H,可以证得△DFC∽△AFH,求得AF的长,根据EF=AF-AE求得k的值,过C作CN⊥BD于N,证明△EDQ∽△CBQ,求得QD的长,即可求解.
【解析】
(1)证明:连接AC,在菱形ABCD中,∵∠BAD=90°,
∴四边形ABCD是正方形.
∴∠PCQ=∠BDC=45°,∠PAC=∠QDC=∠ACD=45°
∴∠ACP+∠ACQ=∠ACQ+∠QCD=45°,
∴∠ACP=∠QCD
∴△APC∽△DQC,
∴
=
=
,
∴AP=
DQ
∵CD-BP=AP,
∴CD-BP=
DQ,即
DQ+BP=CD;
(2)作∠QCK=∠PCQ,过B作BL∥CK,连接AC.
∵∠QCK=∠ADB,
∴∠CQD=∠CKD
∵CK∥BL,
∴∠CKD=∠BLD,
∴△DLB∽△DQC.
∴DL=
DQ,
∴CD+DK=
DQ,
又∵四边形APCK对角互补,AC平分∠PAK,
∴△ACP≌△DCK,
∴DK=AP,
∴CD+DK=CD+AP=2CD-BP=
DQ;
(3)在菱形ABCD中,∠ABD=∠BDC=30°
∵∠PCQ=∠ABD=30°,
∴∠PCQ=∠DCQ.
∵BM∥CD,
∴∠PMC=∠DCQ,
∴△DQC∽△MPC
∴CQ:PM=DC:MC=5:7,
∴BC:MC=5:7.
设BC=5k,则MC=7k,过C作CG⊥AB于G,则∠CGB=90°
∵AD∥BC,
∴∠BAD+∠ABC=180°.
∵∠BAD=120°,
∴∠ABC=60°,
∴BG=
k,CG=
k.
在Rt△MGC中,MG=
=
k,
∴BM=8k.
∵AB=BC=5k,
∴AM=BM-AB=3k.
∵AM∥CD,
∴∠AMC=∠DCM,
∵∠AEM=∠DEC,
∴△AME∽△DCE,
∴AM:DC=AE:DE.
∴AE=
k.
延长CF、BM交于H,则∠DCF=∠MHC
∵FC平分∠ECD,
∴∠ECF=∠DCF,
∴∠MCH=∠MHC,
∴MH=MC=7k,
∴AH=AM+MH=10k.
∵∠HFA=∠CFD,
∴△DFC∽△AFH,
∴DF:AF=DC:AH
∴AF=
k,EF=AF-AE=
k,
∵EF=
k,
∴k=1.
∴DC=5.
过C作CN⊥BD于N,
则∠CND=90°.
∵∠CDN=30°,
∴CN=
,ND=
;
∵BC=CD,
∴BD=2ND=5
;
∵∠DQE=∠BQC,∠CBD=∠EDQ,
∴△EDQ∽△CBQ,
∴ED:BC=DQ:QB,
∴QD=
BD,
∴QD=
.
∵2CD-BP=
DQ,
∴BP=
.

(2)作∠QCK=∠PCQ,过B作BL∥CK,连接AC,易证△DLB∽△DQC则DL=

(3)设BC=5k,则MC=7k,过C作CG⊥AB于G,则∠CGB=90°,在直角△BCG中,利用三角函数求得BG,CG,然后在直角△MCG中,利用勾股定理求得MG的长,证明△AME∽△DCE,根据相似三角形的对应边的比相等求得AE的长,延长CF、BM交于H,可以证得△DFC∽△AFH,求得AF的长,根据EF=AF-AE求得k的值,过C作CN⊥BD于N,证明△EDQ∽△CBQ,求得QD的长,即可求解.
【解析】

∴四边形ABCD是正方形.
∴∠PCQ=∠BDC=45°,∠PAC=∠QDC=∠ACD=45°
∴∠ACP+∠ACQ=∠ACQ+∠QCD=45°,
∴∠ACP=∠QCD
∴△APC∽△DQC,
∴



∴AP=

∵CD-BP=AP,
∴CD-BP=


(2)作∠QCK=∠PCQ,过B作BL∥CK,连接AC.
∵∠QCK=∠ADB,
∴∠CQD=∠CKD

∵CK∥BL,
∴∠CKD=∠BLD,
∴△DLB∽△DQC.
∴DL=

∴CD+DK=

又∵四边形APCK对角互补,AC平分∠PAK,
∴△ACP≌△DCK,
∴DK=AP,
∴CD+DK=CD+AP=2CD-BP=

(3)在菱形ABCD中,∠ABD=∠BDC=30°
∵∠PCQ=∠ABD=30°,
∴∠PCQ=∠DCQ.
∵BM∥CD,
∴∠PMC=∠DCQ,
∴△DQC∽△MPC
∴CQ:PM=DC:MC=5:7,
∴BC:MC=5:7.

设BC=5k,则MC=7k,过C作CG⊥AB于G,则∠CGB=90°
∵AD∥BC,
∴∠BAD+∠ABC=180°.
∵∠BAD=120°,
∴∠ABC=60°,
∴BG=


在Rt△MGC中,MG=


∴BM=8k.
∵AB=BC=5k,
∴AM=BM-AB=3k.
∵AM∥CD,
∴∠AMC=∠DCM,
∵∠AEM=∠DEC,
∴△AME∽△DCE,
∴AM:DC=AE:DE.
∴AE=

延长CF、BM交于H,则∠DCF=∠MHC
∵FC平分∠ECD,
∴∠ECF=∠DCF,
∴∠MCH=∠MHC,
∴MH=MC=7k,
∴AH=AM+MH=10k.
∵∠HFA=∠CFD,
∴△DFC∽△AFH,
∴DF:AF=DC:AH
∴AF=


∵EF=

∴k=1.
∴DC=5.
过C作CN⊥BD于N,
则∠CND=90°.
∵∠CDN=30°,
∴CN=


∵BC=CD,
∴BD=2ND=5

∵∠DQE=∠BQC,∠CBD=∠EDQ,
∴△EDQ∽△CBQ,
∴ED:BC=DQ:QB,
∴QD=

∴QD=

∵2CD-BP=

∴BP=

看了 已知:菱形ABCD中,BD为...的网友还看了以下:
几何学厉害的高手!..我急用...如图,已知:平行四边形ABCD,AC、BD相交于点O,P是平行四 2020-05-12 …
4X120铜芯电缆可以带多大功率要是BV-4*120的3相敷设在明敷设导管中载流量为215AI=P 2020-06-21 …
P=1000×10%×(P/A,9%,5)+1000×(P/F,9%,5)等于多少? 2020-07-16 …
分别写出由下列各组命题构成的“p或q”、“p且q”、“非p”形式的新命题,并判断新命题的真假.(1 2020-08-01 …
已知命题p:三角形abc是等腰三角形,q:三角形abc是直角三角形,写出由其构成的p且q,p非q, 2020-08-03 …
读四个国家国土面积和某年人口统计数据,回答8-44题&nb地p;&nb地p;美国&nb地p;俄罗斯& 2020-11-11 …
分别指出下列各组命题构成的“p∧q”“p∨q”“¬p”形式的命题的真假.(1)p:6<6.q:6=6 2020-12-13 …
分别指出下列各组命题构成的“p∧q”“p∨q”“¬p”形式的命题的真假.(1)p:6<6.q:6=6 2021-01-01 …
分别指出由下列各组命题构成的“p或q”,“p且q”,“非p”形式的复合命题的真假.(1)p:2+2= 2021-01-01 …
已知2x+5y=3,求4^x乘以32^y的值.已知P=99^9/9^99,Q=11^9/9^90.比 2021-01-12 …