早教吧作业答案频道 -->其他-->
已知三角形的三条边长构成等比数列,他们的公比为q,则q的取值范围是(−1+52,1+52)(−1+52,1+52).
题目详情
已知三角形的三条边长构成等比数列,他们的公比为q,则q的取值范围是
(
,
)
−1+
| ||
2 |
1+
| ||
2 |
(
,
)
.−1+
| ||
2 |
1+
| ||
2 |
▼优质解答
答案和解析
设三边:a、aq、aq2、q>0,则由三边关系:两短边和大于第三边可得
(1)当q≥1时,aq2为最大边,a+aq>aq2,等价于:q2-q-1<0,由于方程q2-q-1=0两根为:
和
,
故得
<q<
∵q≥1,
∴1≤q<
(2)当0<q<1时,a为最大边,aq+aq2>a,即得q2+q-1>0,解之得q>
或q<-
(1)当q≥1时,aq2为最大边,a+aq>aq2,等价于:q2-q-1<0,由于方程q2-q-1=0两根为:
1−
| ||
2 |
1+
| ||
2 |
故得
1−
| ||
2 |
1+
| ||
2 |
∵q≥1,
∴1≤q<
1+
| ||
2 |
(2)当0<q<1时,a为最大边,aq+aq2>a,即得q2+q-1>0,解之得q>
−1+
| ||
2 |
1+
|
看了 已知三角形的三条边长构成等比...的网友还看了以下:
求正多边形的边数三角形oab是以正多边形相邻的两个顶点a,b与它的中点o为顶点的三角形,若oab的 2020-05-14 …
定义:三边长和面积都是整数的三角形称为“整数三角形”.数学学习小组的同学从32根等长的火柴棒(每根 2020-05-14 …
三角形的题目.定义:三边长和面积都是整数的三角形称为“整数三角形”.数学学习小组的同学从32根等长 2020-05-14 …
小明经过研究发现非等腰的钝角三角形中存在“整数三角形”,请画出一个非等腰的钝角“整数三角形”使周长 2020-05-22 …
三角形(符号)和方框(符号)分别代表两个不同的数字,方框三角行是一个两位数,三角形三角形三角形是一 2020-06-18 …
复数的三角形式,我不会求辐角主值,复数三角形式中,我会求模,也会求辐角,但不会求辐角主值,而且过程 2020-07-05 …
如何数三角形的个数三角形内从两个顶点引出的射线的条数与三角形的总个数有什么关系? 2020-07-25 …
求等腰直角三角形中角的度数?三角形ABC是等腰直角三角形,角ACB=90度,M,N为斜边AB,AC 2020-07-26 …
三角形abd,bd上一点c使bc等于1\2dc,角b45度,角acd等于60度,求角CAD的度数.三 2020-11-20 …
怎样求这个三角形的度数?三角形的一个内角是它相邻外角的一半,另两个内角的差是20度,求这个三角形各内 2021-01-30 …