早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠DAB=60°.侧面PAD为正三角形,且平面PAD⊥平面ABCD,则下列说法错误的是()A.在棱AD上存在点M,使AD⊥平面PMBB.异面直线AD与PB所成的角为90°C

题目详情

如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠DAB=60°.侧面PAD为正三角形,且平面PAD⊥平面ABCD,则下列说法错误的是(  )
作业帮

A. 在棱AD上存在点M,使AD⊥平面PMB

B. 异面直线AD与PB所成的角为90°

C. 二面角P-BC-A的大小为45°

D. BD⊥平面PAC

▼优质解答
答案和解析
对于A,取AD的中点M,连PM,BM,则∵侧面PAD为正三角形,
∴PM⊥AD,
又底面ABCD是∠DAB=60°的菱形,作业帮
∴三角形ABD是等边三角形,
∴AD⊥BM,
∴AD⊥平面PBM,故A正确,
对于B,∵AD⊥平面PBM,
∴AD⊥PB,即异面直线AD与PB所成的角为90°,故B正确,
对于C,∵底面ABCD为菱形,∠DAB=60°平面PAD⊥平面ABCD,
∴BM⊥BC,则∠PBM是二面角P-BC-A的平面角,
设AB=1,则BM=
3
2
,PM=
3
2

在直角三角形PBM中,tan∠PBM=
PM
BM
=1,
即∠PBM=45°,故二面角P-BC-A的大小为45°,故C正确,
故错误的是D,
故选:D.