早教吧作业答案频道 -->其他-->
(2014•山东)设函数f(x)=exx2-k(2x+lnx)(k为常数,e=2.71828…是自然对数的底数).(Ⅰ)当k≤0时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取
题目详情
(2014•山东)设函数f(x)=
-k(
+lnx)(k为常数,e=2.71828…是自然对数的底数).
(Ⅰ)当k≤0时,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.
ex |
x2 |
2 |
x |
(Ⅰ)当k≤0时,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.
▼优质解答
答案和解析
(Ⅰ)f(x)的定义域为(0,+∞),
∴f′(x)=
(x>0),
当k≤0时,kx≤0,
∴ex-kx>0,
令f′(x)=0,则x=2,
∴当0<x<2时,f′(x)<0,f(x)单调递减;
当x>2时,f′(x)>0,f(x)单调递增,
∴f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).
(Ⅱ)由(Ⅰ)知,k≤0时,函数f(x)在(0,2)内单调递减,
故f(x)在(0,2)内不存在极值点;
当k>0时,设函数g(x)=ex-kx,x∈[0,+∞).
∵g′(x)=ex-k=ex-elnk,
当0<k≤1时,
当x∈(0,2)时,g′(x)=ex-k>0,y=g(x)单调递增,
故f(x)在(0,2)内不存在两个极值点;
当k>1时,
得x∈(0,lnk)时,g′(x)<0,函数y=g(x)单调递减,
x∈(lnk,+∞)时,g′(x)>0,函数y=g(x)单调递增,
∴函数y=g(x)的最小值为g(lnk)=k(1-lnk)
函数f(x)在(0,2)内存在两个极值点
当且仅当
解得:e<k<
综上所述,
函数f(x)在(0,2)内存在两个极值点时,k的取值范围为(e,
)
∴f′(x)=
(x−2)(ex−kx) |
x3 |
当k≤0时,kx≤0,
∴ex-kx>0,
令f′(x)=0,则x=2,
∴当0<x<2时,f′(x)<0,f(x)单调递减;
当x>2时,f′(x)>0,f(x)单调递增,
∴f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).
(Ⅱ)由(Ⅰ)知,k≤0时,函数f(x)在(0,2)内单调递减,
故f(x)在(0,2)内不存在极值点;
当k>0时,设函数g(x)=ex-kx,x∈[0,+∞).
∵g′(x)=ex-k=ex-elnk,
当0<k≤1时,
当x∈(0,2)时,g′(x)=ex-k>0,y=g(x)单调递增,
故f(x)在(0,2)内不存在两个极值点;
当k>1时,
得x∈(0,lnk)时,g′(x)<0,函数y=g(x)单调递减,
x∈(lnk,+∞)时,g′(x)>0,函数y=g(x)单调递增,
∴函数y=g(x)的最小值为g(lnk)=k(1-lnk)
函数f(x)在(0,2)内存在两个极值点
当且仅当
|
解得:e<k<
e2 |
2 |
综上所述,
函数f(x)在(0,2)内存在两个极值点时,k的取值范围为(e,
e2 |
2 |
看了 (2014•山东)设函数f(...的网友还看了以下:
如图,正比例函数y=2x与反比例函数y=kx(k>0)的图象相交于A、C两点,过点A作AD垂直x轴 2020-04-08 …
还是lingo问题road(country,country):length,xie,c;endse 2020-05-13 …
excel2003中怎样把A列只间隔0的相同数的个数显示在A列最后出现的相同数B列相同位置,A B 2020-05-16 …
(2014•福州模拟)一半径R=0.6m的金属圆筒有一圈细窄缝,形状如图所示.圆筒右侧与一个垂直纸 2020-05-16 …
已知X1,X2是一元二次方程4KX平方-4KX+k+1=0的两个实数根.1.是否存在实数K、使(2 2020-05-17 …
当k取不同的值时,y关于x的函数y=kx+1(k≠0)的图象为总是经过点(0,1)的直线,我们把所 2020-05-17 …
ansys直接建立有限元模型问题finish/clear/prep7n,1,0,0,0n,2,0, 2020-05-17 …
如图,反比例函数y=mx(m≠0)与一次函数y=kx+b(k≠0)的图象交于点A(4,1)和点B( 2020-06-12 …
如图,一次函数y=kx+b(k≠0)的图象经过点M(3,2),且与一次函数y=-2x+4的图象交于 2020-06-14 …
已知直线y=0.5x与双曲线y=k/x(k>0)交与A,B两点,且点A的横坐标为4.已知直线y=0 2020-06-14 …