早教吧作业答案频道 -->其他-->
定义:设函数f(x)在(a,b)内可导,若f′(x)为(a,b)内的增函数,则称f(x)为(a,b)内的下凸函数.(Ⅰ)已知f(x)=ex-ax3+x在(0,+∞)内为下凸函数,试求实数a的取值范围;
题目详情
定义:设函数f(x)在(a,b)内可导,若f′(x)为(a,b)内的增函数,则称f(x)为(a,b)内的下凸函数.
(Ⅰ)已知f(x)=ex-ax3+x在(0,+∞)内为下凸函数,试求实数a的取值范围;
(Ⅱ)设f(x)为(a,b)内的下凸函数,求证:对于任意正数λ1,λ2,λ1+λ2=1,
不等式f(λ1x1+λ2x2)≤λ1f(x1)+λ2f(x2)对于任意的x1,x2∈(a,b)恒成立.
(Ⅰ)已知f(x)=ex-ax3+x在(0,+∞)内为下凸函数,试求实数a的取值范围;
(Ⅱ)设f(x)为(a,b)内的下凸函数,求证:对于任意正数λ1,λ2,λ1+λ2=1,
不等式f(λ1x1+λ2x2)≤λ1f(x1)+λ2f(x2)对于任意的x1,x2∈(a,b)恒成立.
▼优质解答
答案和解析
(I)f(x)=ex-ax3+x在(0,+∞)内为下凸函数等价于x∈(0,+∞)时,f′(x)=ex-3ax2+1为增函数;
所以x∈(0,+∞)时,[f′(x)]′=ex-6ax≥0恒成立,即a≤
恒成立
设g(x)=
,g′(x)=
,
令g′(x)=0,得x=1,且当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.
所以在x=1时,g(x)取得最小值为
,所以a≤
(II)证明:根据上凸函数的定义“f(x)是定义在闭区间[a,b]上的函数,若任意x,y∈[a,b]和任意λ∈(0,1),有f(λx+(1-λ)y)≤λf(x)+(1-λ)f(y)成立”
取x=x1,y=x2,λ=λ1,1-λ=1-λ1=λ2,而任意正数λ1,λ2,λ1+λ2=1,x1、x2∈(a,b)
得不等式f(λ1x1+λ2x2)≤λ1f(x1)+λ2f(x2)对于任意的x1,x2∈(a,b)恒成立.
所以x∈(0,+∞)时,[f′(x)]′=ex-6ax≥0恒成立,即a≤
ex |
6x |
设g(x)=
ex |
6x |
ex(x−1) |
6x2 |
令g′(x)=0,得x=1,且当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.
所以在x=1时,g(x)取得最小值为
e |
6 |
e |
6 |
(II)证明:根据上凸函数的定义“f(x)是定义在闭区间[a,b]上的函数,若任意x,y∈[a,b]和任意λ∈(0,1),有f(λx+(1-λ)y)≤λf(x)+(1-λ)f(y)成立”
取x=x1,y=x2,λ=λ1,1-λ=1-λ1=λ2,而任意正数λ1,λ2,λ1+λ2=1,x1、x2∈(a,b)
得不等式f(λ1x1+λ2x2)≤λ1f(x1)+λ2f(x2)对于任意的x1,x2∈(a,b)恒成立.
看了 定义:设函数f(x)在(a,...的网友还看了以下:
函数y=x^(1/3)在x=0处导数不存在,但是切线存在,那函数在此点可导么?可微么?函数y=x^ 2020-06-03 …
在平面直角坐标系中,若把函数y=x的图像用E(x,x)记,函数y=3x+2的图像用E(x,3x+2 2020-06-06 …
导数相关的题.1.当K取何值时,分段函数:x不等于0时,f(x)=x的k次方乘以sin(1/x), 2020-06-11 …
1.函数f(x)=∣x-1∣arctan(x-1)在x=1点是否可导?为什么?2.设函数f(x)= 2020-07-09 …
求函数的驻点f'x(x,y)=2xy(4-x-y)-x^2y=0.(1)其中f'x(x,y)中左边 2020-07-11 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
1.集合M={x|x^2>4},P={x|2/{x-1}≥0,则集合P除集合M的集合N{}A:{x 2020-07-30 …
我们把形如y=f(x)φ(x)的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边 2020-12-05 …
我们把形如y=f(x)φ(x)的函数称为幂指函数,幂指函数在求导时,可以利用对法数:在函数解析式两边 2020-12-05 …
一道函数题f(1/x)=x²+1/x+1则f'(1)=(-1)分析令1/x=t则t=1/x,可得f( 2021-01-07 …