早教吧作业答案频道 -->其他-->
定义:设函数f(x)在(a,b)内可导,若f′(x)为(a,b)内的增函数,则称f(x)为(a,b)内的下凸函数.(Ⅰ)已知f(x)=ex-ax3+x在(0,+∞)内为下凸函数,试求实数a的取值范围;
题目详情
定义:设函数f(x)在(a,b)内可导,若f′(x)为(a,b)内的增函数,则称f(x)为(a,b)内的下凸函数.
(Ⅰ)已知f(x)=ex-ax3+x在(0,+∞)内为下凸函数,试求实数a的取值范围;
(Ⅱ)设f(x)为(a,b)内的下凸函数,求证:对于任意正数λ1,λ2,λ1+λ2=1,
不等式f(λ1x1+λ2x2)≤λ1f(x1)+λ2f(x2)对于任意的x1,x2∈(a,b)恒成立.
(Ⅰ)已知f(x)=ex-ax3+x在(0,+∞)内为下凸函数,试求实数a的取值范围;
(Ⅱ)设f(x)为(a,b)内的下凸函数,求证:对于任意正数λ1,λ2,λ1+λ2=1,
不等式f(λ1x1+λ2x2)≤λ1f(x1)+λ2f(x2)对于任意的x1,x2∈(a,b)恒成立.
▼优质解答
答案和解析
(I)f(x)=ex-ax3+x在(0,+∞)内为下凸函数等价于x∈(0,+∞)时,f′(x)=ex-3ax2+1为增函数;
所以x∈(0,+∞)时,[f′(x)]′=ex-6ax≥0恒成立,即a≤
恒成立
设g(x)=
,g′(x)=
,
令g′(x)=0,得x=1,且当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.
所以在x=1时,g(x)取得最小值为
,所以a≤
(II)证明:根据上凸函数的定义“f(x)是定义在闭区间[a,b]上的函数,若任意x,y∈[a,b]和任意λ∈(0,1),有f(λx+(1-λ)y)≤λf(x)+(1-λ)f(y)成立”
取x=x1,y=x2,λ=λ1,1-λ=1-λ1=λ2,而任意正数λ1,λ2,λ1+λ2=1,x1、x2∈(a,b)
得不等式f(λ1x1+λ2x2)≤λ1f(x1)+λ2f(x2)对于任意的x1,x2∈(a,b)恒成立.
所以x∈(0,+∞)时,[f′(x)]′=ex-6ax≥0恒成立,即a≤
ex |
6x |
设g(x)=
ex |
6x |
ex(x−1) |
6x2 |
令g′(x)=0,得x=1,且当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.
所以在x=1时,g(x)取得最小值为
e |
6 |
e |
6 |
(II)证明:根据上凸函数的定义“f(x)是定义在闭区间[a,b]上的函数,若任意x,y∈[a,b]和任意λ∈(0,1),有f(λx+(1-λ)y)≤λf(x)+(1-λ)f(y)成立”
取x=x1,y=x2,λ=λ1,1-λ=1-λ1=λ2,而任意正数λ1,λ2,λ1+λ2=1,x1、x2∈(a,b)
得不等式f(λ1x1+λ2x2)≤λ1f(x1)+λ2f(x2)对于任意的x1,x2∈(a,b)恒成立.
看了 定义:设函数f(x)在(a,...的网友还看了以下:
若f(x)在实数域内二阶可导,f(x)=-f(-x)且在0到正无穷内有f'(x)>0,f''(x) 2020-06-14 …
要使在距凸透镜25cm的光屏上得到一个清晰缩小的像,在以下凸透镜中,应选用()A.f=30cm凸透 2020-07-02 …
将物体放在焦距为f的凸透镜主轴上,分别离凸透镜20厘米、14厘米、6厘米时,各能得到缩小的实像、放 2020-07-18 …
要使在距凸透镜25cm的光屏上得到一个清晰缩小的像,在以下凸透镜中,应选用()A.f=30cm凸透 2020-07-29 …
要使在距凸透镜25cm的光屏上得到一个清晰缩小的像,在以下凸透镜中,应选用()A.f=30cm凸透 2020-07-29 …
要使在距凸透镜25cm的光屏上得到一个清晰缩小的像,在以下凸透镜中,应选用()A.f=30cm凸透 2020-07-29 …
要使在距凸透镜25cm的光屏上得到一个清晰缩小的像,在以下凸透镜中,应选用()A.f=30cm凸透 2020-07-29 …
已知f(x)在[0,1]范围内可导,f(0)=0,f(1)=1,证明存在不同的X1,X2在(0,1) 2020-10-31 …
将物体放在焦距为f的凸透镜主轴上,分别离凸透镜20厘米、14厘米、6厘米时,各能得到缩小的实像、放大 2020-12-30 …
将物体放在焦距为f的凸透镜主轴上,离凸透镜20cm、14cm和6cm处时,分别得到缩小的实像、放大的 2021-01-13 …