早教吧 育儿知识 作业答案 考试题库 百科 知识分享

证明∫(上标是b,下标是a)f(x)dx=1/2∫(上标是b,下标是a)[f(x)+((ab)/(x^2))*f((ab)/x)]dx

题目详情
证明∫(上标是b ,下标是a)f(x)dx=1/2∫(上标是b ,下标是a)[f(x)+((ab)
/(x^2))*f(( ab)/x)]dx
▼优质解答
答案和解析
1/2∫(b,a)[f(x)+((ab)/(x^2))*f((ab)/x)]dx
=1/2∫(b,a)f(x)dx+1/2∫(b,a)[((ab)/(x^2))*f((ab)/x)]dx
前面的f(x)dx暂不考虑,
后面部分,令y=ab/x,则x=ab/y
带入1/2∫(b,a)[((ab)/(x^2))*f((ab)/x)]dx得:
1/2∫(b,a)[y^2/(ab)f(y)]d(ab/y)
因为d(ab/y)=ab/y^2dy
所以1/2∫(b,a)[y^2/(ab)f(y)]d(ab/y)=1/2∫(b ,a)f(y)d(y)
所以1/2∫(b,a)[f(x)+((ab)/(x^2))*f((ab)/x)]dx=∫(b,a)f(x)dx
看了 证明∫(上标是b,下标是a)...的网友还看了以下: