早教吧作业答案频道 -->数学-->
证明∫(上标是b,下标是a)f(x)dx=1/2∫(上标是b,下标是a)[f(x)+((ab)/(x^2))*f((ab)/x)]dx
题目详情
证明∫(上标是b ,下标是a)f(x)dx=1/2∫(上标是b ,下标是a)[f(x)+((ab)
/(x^2))*f(( ab)/x)]dx
/(x^2))*f(( ab)/x)]dx
▼优质解答
答案和解析
1/2∫(b,a)[f(x)+((ab)/(x^2))*f((ab)/x)]dx
=1/2∫(b,a)f(x)dx+1/2∫(b,a)[((ab)/(x^2))*f((ab)/x)]dx
前面的f(x)dx暂不考虑,
后面部分,令y=ab/x,则x=ab/y
带入1/2∫(b,a)[((ab)/(x^2))*f((ab)/x)]dx得:
1/2∫(b,a)[y^2/(ab)f(y)]d(ab/y)
因为d(ab/y)=ab/y^2dy
所以1/2∫(b,a)[y^2/(ab)f(y)]d(ab/y)=1/2∫(b ,a)f(y)d(y)
所以1/2∫(b,a)[f(x)+((ab)/(x^2))*f((ab)/x)]dx=∫(b,a)f(x)dx
=1/2∫(b,a)f(x)dx+1/2∫(b,a)[((ab)/(x^2))*f((ab)/x)]dx
前面的f(x)dx暂不考虑,
后面部分,令y=ab/x,则x=ab/y
带入1/2∫(b,a)[((ab)/(x^2))*f((ab)/x)]dx得:
1/2∫(b,a)[y^2/(ab)f(y)]d(ab/y)
因为d(ab/y)=ab/y^2dy
所以1/2∫(b,a)[y^2/(ab)f(y)]d(ab/y)=1/2∫(b ,a)f(y)d(y)
所以1/2∫(b,a)[f(x)+((ab)/(x^2))*f((ab)/x)]dx=∫(b,a)f(x)dx
看了 证明∫(上标是b,下标是a)...的网友还看了以下:
已知函数f(x)满足(1/2)^f(x)=x+1,f^(-1)(x)是f(x)的反函数,则函数y=f 2020-03-31 …
(1),设g(x)=1+x,且当x≠0时,f(g(x))=(1-x)/x,求f(1/2)(2),f 2020-04-26 …
f(x)的定义域为R+,对任意x,y∈R+恒有f(xy)=f(x)+f(y)设f^-1(x)是f( 2020-06-05 …
已知f(x+x/1)=x^2+(1/x^2)+3,求f(x)已知f(x/x+1)=x^2+1/x^ 2020-06-07 …
已知函数f(x)=-x+loga^1-x/1+x,则f(-1/5)+f(-1/4)+f(-1/3) 2020-06-09 …
1.设偶函数f(x)在[0,+∞)上为减函数,则不等式f(x)>f(2x+1)的解集是2.已知f( 2020-07-25 …
函数f(x)的倒数1/f(x)表示成-1次方怎么写,书上f(x)的2次方是f^2(x),但是f^- 2020-08-01 …
函数f(x)的倒数1/f(x)表示成-1次方怎么写,书上f(x)的2次方是f^2(x),但是f^- 2020-08-01 …
我想问下高数x=2lnf(x)+1是怎么化解为f-1(x)=2lnx1的.(f-1(x)是f(x)的 2020-11-20 …
最近被一个问题搞糊涂了已知f'(x)=lnx/(1+x)那么f'(1/x)=ln(1/x)/[1+( 2020-12-28 …