早教吧作业答案频道 -->数学-->
在平面直角坐标系中,点A的坐标为(-6,6),以A为顶点的∠BAC的两边始终与x轴交于B、C两点(B在C左面),且∠BAC=45°.(1)如图1,连接OA,当AB=AC时,试说明:OA=OB.(2)过点A作AD⊥x轴,
题目详情
在平面直角坐标系中,点A的坐标为(-6,6),以A为顶点的∠BAC的两边始终与x轴交于B、C两点(B在C左面),且∠BAC=45°.
(1)如图1,连接OA,当AB=AC时,试说明:OA=OB.
(2)过点A作AD⊥x轴,垂足为D,当DC=2时,将∠BAC沿AC所在直线翻折,翻折后边AB交y轴于点M,求点M的坐标.

(1)如图1,连接OA,当AB=AC时,试说明:OA=OB.
(2)过点A作AD⊥x轴,垂足为D,当DC=2时,将∠BAC沿AC所在直线翻折,翻折后边AB交y轴于点M,求点M的坐标.

▼优质解答
答案和解析
(1)∵AB=AC,∠BAC=45°,
∴∠ABC=∠ACB=67.5°.
过点A作AE⊥OB于E,
则△AEO是等腰直角三角形,∠EAO=45°.
∵AB=AC,AE⊥OB,
∴∠BAE=
∠BAC=22.5°.
∴∠BAO=67.5°=∠ABC,
∴OA=OB.
(2)设OM=x.
当点C在点D右侧时,连接CM,过点A作AF⊥y轴于点F,
由∠BAM=∠DAF=90°,
可知:∠BAD=∠MAF;
∴在△BAD和△MAF中,
,
∴△BAD≌△MAF.
∴BD=FM=6-x.
又∵AC=AC,∠BAC=∠MAC,
∴△BAC≌△MAC.
∴BC=CM=8-x.
在Rt△COM中,由勾股定理得:
OC2+OM2=CM2,即42+x2=(8-x)2,
解得:x=3,
∴M点坐标为(0,3).
当点C在点D左侧时,连接CM,过点A作AF⊥y轴于点F,
同理,△BAD≌△MAF,
∴BD=FM=6+x.
同理,
△BAC≌△MAC,
∴BC=CM=4+x.
在Rt△COM中,由勾股定理得:
OC2+OM2=CM2,即82+x2=(4+x)2,
解得:x=6,
∴M点坐标为(0,-6).

∴∠ABC=∠ACB=67.5°.
过点A作AE⊥OB于E,
则△AEO是等腰直角三角形,∠EAO=45°.
∵AB=AC,AE⊥OB,
∴∠BAE=
1 |
2 |
∴∠BAO=67.5°=∠ABC,
∴OA=OB.
(2)设OM=x.
当点C在点D右侧时,连接CM,过点A作AF⊥y轴于点F,
由∠BAM=∠DAF=90°,
可知:∠BAD=∠MAF;
∴在△BAD和△MAF中,
|
∴△BAD≌△MAF.
∴BD=FM=6-x.
又∵AC=AC,∠BAC=∠MAC,
∴△BAC≌△MAC.
∴BC=CM=8-x.
在Rt△COM中,由勾股定理得:
OC2+OM2=CM2,即42+x2=(8-x)2,
解得:x=3,
∴M点坐标为(0,3).
当点C在点D左侧时,连接CM,过点A作AF⊥y轴于点F,
同理,△BAD≌△MAF,
∴BD=FM=6+x.
同理,
△BAC≌△MAC,
∴BC=CM=4+x.
在Rt△COM中,由勾股定理得:
OC2+OM2=CM2,即82+x2=(4+x)2,
解得:x=6,
∴M点坐标为(0,-6).
看了 在平面直角坐标系中,点A的坐...的网友还看了以下:
如图,已知MN表示某引水工程的一段设计路线,从M到N的走向为南偏东30°,在M的南偏东60°方向上有 2020-03-30 …
已知﹛an﹜是以a为首项,q为公比的等比数列,Sn为它的前n项和.(Ⅰ)当S1,S3,S4成等差数 2020-06-12 …
为什么a的(log以a为底,N为真数)次方=N为什么log以a为底,M的N次方为真数=n*log以 2020-07-16 …
在平面直角坐标系中A(2,0),以A为圆心,1为半径作⊙A,若P(x,y)是⊙A上任意一点,则yx 2020-07-19 …
如图,在平行四边形ABCD中,以A为圆心,AB为半径画弧,交AD于F,再分别以B、F为圆心,大于1 2020-07-29 …
已知线段BC及其所在直线外一点A,以A为顶点,BC为对角线可以做多少个平行四边形?已知线段BC及其 2020-08-02 …
已知以a为底x的对数+3倍的以x为底a的对数-以x为底y的对数=3(a>1)若设x=a的t次方.试用 2020-11-06 …
f(x)=log以a为底(8-2^x)(a>0且a不为1)反函数是其本身求af(x)=log以a为底 2020-12-08 …
如图所示A为长木板,上表面粗糙,在水平面上以速度v1向右匀速运动,物块B在木板A的上面以速度v2向右 2020-12-15 …
函数f[x]=logaXa大于0,且a不等于1,在2,3上最大值为1,则a=当a大于1时,f(x)图 2021-01-15 …