早教吧作业答案频道 -->数学-->
如图,将非等腰△ABC的纸片沿DE折叠后,使点A落在BC边上的点F处.若点D为AB边的中点,则下列结论:①△BDF是等腰三角形;②∠DFE=∠CFE;③DE是△ABC的中位线,成立的有()A.①②B.①
题目详情
如图,将非等腰△ABC的纸片沿DE折叠后,使点A落在BC边上的点F处.若点D为AB边的中点,则下列结论:①△BDF是等腰三角形;②∠DFE=∠CFE;③DE是△ABC的中位线,成立的有( )
A. ①②
B. ①③
C. ②③
D. ①②③

B. ①③
C. ②③
D. ①②③
▼优质解答
答案和解析
由于△DFE是△ADE对折而成,故△DFE≌△ADE,
∴AD=FD,
又∵点D为AB边的中点,
∴AD=BD,
∴BD=DF,即△BDF是等腰三角形,故(1)正确;
由于△DFE是△ADE对折而成,故△DFE≌△ADE,
∴∠ADE=∠FDE,
∵∠ADF=2∠FDE=∠B+∠DFB=2∠DFB,
∴∠FDE=∠DFB,
∴DE∥BC,点E也是AC的中点,故(3)正确;
同理可得△EFC也为等腰三角形,∠C=∠EFC,由于△ABC是非等腰的,
∴∠C≠∠B,也即∠EFC≠∠DFB,
∴∠EFC与∠DFB,∠DFE不都等于60°,
∴②∠DFE=∠CFE就不成立.
故选B.
∴AD=FD,
又∵点D为AB边的中点,
∴AD=BD,
∴BD=DF,即△BDF是等腰三角形,故(1)正确;
由于△DFE是△ADE对折而成,故△DFE≌△ADE,
∴∠ADE=∠FDE,
∵∠ADF=2∠FDE=∠B+∠DFB=2∠DFB,
∴∠FDE=∠DFB,
∴DE∥BC,点E也是AC的中点,故(3)正确;
同理可得△EFC也为等腰三角形,∠C=∠EFC,由于△ABC是非等腰的,
∴∠C≠∠B,也即∠EFC≠∠DFB,
∴∠EFC与∠DFB,∠DFE不都等于60°,
∴②∠DFE=∠CFE就不成立.
故选B.
看了 如图,将非等腰△ABC的纸片...的网友还看了以下:
在平行四边形ABCD中,点E,F分别是线段AD,BC上的两动点,点E从点A向D运动在平行四边形AB 2020-05-13 …
如何用调和点列证明牛顿线啊?牛顿线:四边形ABCD中,AB、CD交于点E,AD、BC交于点F,BD 2020-05-15 …
在ABCD中,E是CD的中点,F是AE的中点,G是BE的中点,四边形CEFG是平行四边形吗?证明: 2020-05-16 …
几道初二的四边形的填空题,(1)在菱形ABCD中,AE⊥BC于点E,AE⊥CD于点F,而点E、F恰 2020-05-20 …
如图,正方形ABCD中,点E为边BC的上一动点,作AF⊥DE交DE、DC分别于P、F点,连PC(1 2020-06-15 …
如图,在△ABC中,点O在边AC上,⊙O与△ABC的边BC,AB分别相切于C,D两点,与边AC交于 2020-06-15 …
如图△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中点,点P从B出发,以a厘米/秒( 2020-07-14 …
如图所示,电场中A点的电场强度E=2.0×104N/C.将电荷量q=-2.0×10-8C的点电荷放 2020-07-18 …
已知抛物线y2=4x的焦点为F,准线与x轴的交点为K,点P是抛物线上的动点,Q是KP的中点.已知抛 2020-07-31 …
已知平面直角坐标系xoy中,点A(0,3),点B和点C是x轴上的动点(点B在点C的左边)点C在原点的 2020-12-25 …